代码改变世界程序员

Spark-submit执行流程,了解一下

2020-12-11  本文已影响0人  华为云开发者联盟

摘要:本文主要是通过Spark代码走读来了解spark-submit的流程。

1.任务命令提交

我们在进行Spark任务提交时,会使用“spark-submit -class .....”样式的命令来提交任务,该命令为Spark目录下的shell脚本。它的作用是查询spark-home,调用spark-class命令。

if [ -z "${SPARK_HOME}" ]; then

  source "$(dirname "$0")"/find-spark-home

fi

# disable randomized hash for string in Python 3.3+

export PYTHONHASHSEED=0

exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"

随后会执行spark-class命令,以SparkSubmit类为参数进行任务向Spark程序的提交,而Spark-class的shell脚本主要是执行以下几个步骤:

(1)加载spark环境参数,从conf中获取

if [ -z "${SPARK_HOME}" ]; then

  source "$(dirname "$0")"/find-spark-home

fi

. "${SPARK_HOME}"/bin/load-spark-env.sh

# 寻找javahome

if [ -n "${JAVA_HOME}" ]; then

  RUNNER="${JAVA_HOME}/bin/java"

else

  if [ "$(command -v java)" ]; then

    RUNNER="java"

  else

    echo "JAVA_HOME is not set" >&2

    exit 1

  fi

fi

(2)载入java,jar包等

# Find Spark jars.

if [ -d "${SPARK_HOME}/jars" ]; then

  SPARK_JARS_DIR="${SPARK_HOME}/jars"

else

  SPARK_JARS_DIR="${SPARK_HOME}/assembly/target/scala-$SPARK_SCALA_VERSION/jars"

fi

(3)调用org.apache.spark.launcher中的Main进行参数注入

build_command() {

  "$RUNNER" -Xmx128m -cp "$LAUNCH_CLASSPATH" org.apache.spark.launcher.Main "$@"

  printf "%d\0" $?

}

(4)shell脚本监测任务执行状态,是否完成或者退出任务,通过执行返回值,判断是否结束

if ! [[ $LAUNCHER_EXIT_CODE =~ ^[0-9]+$ ]]; then

  echo "${CMD[@]}" | head -n-1 1>&2

  exit 1

fi

if [ $LAUNCHER_EXIT_CODE != 0 ]; then

  exit $LAUNCHER_EXIT_CODE

fi

CMD=("${CMD[@]:0:$LAST}")

exec "${CMD[@]}"

2.任务检测及提交任务到Spark

检测执行模式(class or submit)构建cmd,在submit中进行参数的检查(SparkSubmitOptionParser),构建命令行并且打印回spark-class中,最后调用exec执行spark命令行提交任务。通过组装而成cmd内容如下所示:

/usr/local/java/jdk1.8.0_91/bin/java-cp

/data/spark-1.6.0-bin-hadoop2.6/conf/:/data/spark-1.6.0-bin-hadoop2.6/lib/spark-assembly-1.6.0-hadoop2.6.0.jar:/data/spark-1.6.0-bin-hadoop2.6/lib/datanucleus-api-jdo-3.2.6.jar:/data/spark-1.6.0-bin-hadoop2.6/lib/datanucleus-rdbms-3.2.9.jar:/data/spark-1.6.0-bin-hadoop2.6/lib/datanucleus-core-3.2.10.jar:/data/hadoop-2.6.5/etc/hadoop/

-Xms1g-Xmx1g -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=1234

org.apache.spark.deploy.SparkSubmit

--classorg.apache.spark.repl.Main

--nameSpark shell

--masterspark://localhost:7077

--verbose/tool/jarDir/maven_scala-1.0-SNAPSHOT.jar

3.SparkSubmit函数的执行

(1)Spark任务在提交之后会执行SparkSubmit中的main方法

def main(args: Array[String]): Unit = {

    val submit = new SparkSubmit()

    submit.doSubmit(args)

  }

(2)doSubmit()对log进行初始化,添加spark任务参数,通过参数类型执行任务:

def doSubmit(args: Array[String]): Unit = {

    // Initialize logging if it hasn't been done yet. Keep track of whether logging needs to

    // be reset before the application starts.

    val uninitLog = initializeLogIfNecessary(true, silent = true)

    val appArgs = parseArguments(args)

    if (appArgs.verbose) {

      logInfo(appArgs.toString)

    }

    appArgs.action match {

      case SparkSubmitAction.SUBMIT => submit(appArgs, uninitLog)

      case SparkSubmitAction.KILL => kill(appArgs)

      case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)

      case SparkSubmitAction.PRINT_VERSION => printVersion()

    }

  }

SUBMIT:使用提供的参数提交application

KILL(Standalone and Mesos cluster mode only):通过REST协议终止任务

REQUEST_STATUS(Standalone and Mesos cluster mode only):通过REST协议请求已经提交任务的状态

PRINT_VERSION:对log输出版本信息

(3)调用submit函数:

def doRunMain(): Unit = {

      if (args.proxyUser != null) {

        val proxyUser = UserGroupInformation.createProxyUser(args.proxyUser,

          UserGroupInformation.getCurrentUser())

        try {

          proxyUser.doAs(new PrivilegedExceptionAction[Unit]() {

            override def run(): Unit = {

              runMain(args, uninitLog)

            }

          })

        } catch {

          case e: Exception =>

            // Hadoop's AuthorizationException suppresses the exception's stack trace, which

            // makes the message printed to the output by the JVM not very helpful. Instead,

            // detect exceptions with empty stack traces here, and treat them differently.

            if (e.getStackTrace().length == 0) {

              error(s"ERROR: ${e.getClass().getName()}: ${e.getMessage()}")

            } else {

              throw e

            }

        }

      } else {

        runMain(args, uninitLog)

      }

    }

doRunMain为集群调用子main class准备参数,然后调用runMain()执行任务invoke main

4.总结

Spark在作业提交中会采用多种不同的参数及模式,都会根据不同的参数选择不同的分支执行,因此在最后提交的runMain中会将所需要的参数传递给执行函数。

本文分享自华为云社区《Spark内核解析之Spark-submit》,原文作者:笨熊爱喝cola。

点击关注,第一时间了解华为云新鲜技术~

上一篇 下一篇

猜你喜欢

热点阅读