Java并发包基础回顾
1.ConcurrentHashMap
原理:
ConcurrentHashMap内部使用段(Segment)来表示这些不同的部分,每个段其实就是一个小的HashTable,它们有自己的锁。只要多个修改操作发生在不同的段上,它们就可以并发进行。把一个整体分成了16个段(Segment.也就是最高支持16个线程的并发修改操作。这也是在重线程场景时减小锁的粒度从而降低锁竞争的一种方案。并且代码中大多共享变量使用volatile关键字声明,目的是第一时间获取修改的内容,性能非常好。
2.HashTable和HashMap
区别:hashtable采用sychonized封装是线程安全的,效率低;hashmap线程不安全,可以插入null键和null值
3.Verctor和ArrayList
1.ArrayList是最常用的List实现类,内部是通过数组实现的,它允许对元素进行快速随机访问。数组的缺点是每个元素之间不能有间隔,当数组大小不满足时需要增加存储能力,就要讲已经有数组的数据复制到新的存储空间中。当从ArrayList的中间位置插入或者删除元素时,需要对数组进行复制、移动、代价比较高。因此,它适合随机查找和遍历,不适合插入和删除。
2.Vector与ArrayList一样,也是通过数组实现的,不同的是它支持线程的同步,即某一时刻只有一个线程能够写Vector,避免多线程同时写而引起的不一致性,但实现同步需要很高的花费,因此,访问它比访问ArrayList慢
注意: Vector线程安全、ArrayList
4.CountDownLatch
利用它可以实现类似计数器的功能。比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。
5.CyclicBarrier(信号量)
CyclicBarrier初始化时规定一个数目,然后计算调用了CyclicBarrier.await()进入等待的线程数。当线程数达到了这个数目时,所有进入等待状态的线程被唤醒并继续。
CyclicBarrier就象它名字的意思一样,可看成是个障碍, 所有的线程必须到齐后才能一起通过这个障碍。
CyclicBarrier初始时还可带一个Runnable的参数, 此Runnable任务在CyclicBarrier的数目达到后,所有其它线程被唤醒前被执行。
class Writer extends Thread {
private CyclicBarrier cyclicBarrier;
public Writer(CyclicBarrier cyclicBarrier){
this.cyclicBarrier=cyclicBarrier;
}
@Override
public void run() {
System.out.println("线程" + Thread.currentThread().getName() + ",正在写入数据");
try {
Thread.sleep(3000);
} catch (Exception e) {
// TODO: handle exception
}
System.out.println("线程" + Thread.currentThread().getName() + ",写入数据成功.....");
try {
cyclicBarrier.await();
} catch (Exception e) {
}
System.out.println("所有线程执行完毕..........");
}
}
public class Test001 {
public static void main(String[] args) {
CyclicBarrier cyclicBarrier=new CyclicBarrier(5);
for (int i = 0; i < 5; i++) {
Writer writer = new Writer(cyclicBarrier);
writer.start();
}
}
}
###6.Semaphore
Semaphore是一种基于计数的信号量。它可以设定一个阈值,基于此,多个线程竞争获取许可信号,做自己的申请后归还,超过阈值后,线程申请许可信号将会被阻塞。Semaphore可以用来构建一些对象池,资源池之类的,比如数据库连接池,我们也可以创建计数为1的Semaphore,将其作为一种类似互斥锁的机制,这也叫二元信号量,表示两种互斥状态。它的用法如下:
availablePermits函数用来获取当前可用的资源数量
wc.acquire(); //申请资源
wc.release();// 释放资源
// 创建一个计数阈值为5的信号量对象
// 只能5个线程同时访问
Semaphore semp = new Semaphore(5);
try {
// 申请许可
semp.acquire();
try {
// 业务逻辑
} catch (Exception e) {
} finally {
// 释放许可
semp.release();
}
} catch (InterruptedException e) {
}
7.BlockingQueue
在Java中,BlockingQueue的接口位于java.util.concurrent 包中(在Java5版本开始提供),由上面介绍的阻塞队列的特性可知,阻塞队列是线程安全的。
在新增的Concurrent包中,BlockingQueue很好的解决了多线程中,如何高效安全“传输”数据的问题。通过这些高效并且线程安全的队列类,为我们快速搭建高质量的多线程程序带来极大的便利。本文详细介绍了BlockingQueue家庭中的所有成员,包括他们各自的功能以及常见使用场景。
认识BlockingQueue
阻塞队列,顾名思义,首先它是一个队列,而一个队列在数据结构中所起的作用大致如下图所示:
从上图我们可以很清楚看到,通过一个共享的队列,可以使得数据由队列的一端输入,从另外一端输出;
常用的队列主要有以下两种:(当然通过不同的实现方式,还可以延伸出很多不同类型的队列,DelayQueue就是其中的一种)
先进先出(FIFO):先插入的队列的元素也最先出队列,类似于排队的功能。从某种程度上来说这种队列也体现了一种公平性。
后进先出(LIFO):后插入队列的元素最先出队列,这种队列优先处理最近发生的事件。