Pandas入门
pandas的数据结构介绍
我们将使用下面的方式导入pandas:
import pandas as pd
from pandas import Series, DataFrame
Series
Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。由一组数据就可产生最简单的Series:
In [6]: obj = pd.Series([4,7,-5,3])
In [7]: obj
Out[7]:
0 4
1 7
2 -5
3 3
dtype: int64
Series的字符串表现为:索引在左边,值在右边。由于没有为数据指定索引,于是会自动创建一个0到N-1(N为数据的长度)的整数索引。可以通过Series的values和index属性获取其数组表示形式和索引对象:
In [8]: obj.values
Out[8]: array([ 4, 7, -5, 3], dtype=int64)
In [9]: obj.index
Out[9]: RangeIndex(start=0, stop=4, step=1)
通常,我们希望创建的Series带有一个可以对各个数据点进行标记的索引:
In [10]: obj2 = pd.Series([4,7,-5,3],index=['d','b','a','c'])
In [12]: obj2
Out[12]:
d 4
b 7
a -5
c 3
dtype: int64
与普通NumPy数组相比,可以通过索引的方式选取Series中的单个或一组值:
In [13]: obj2['a']
Out[13]: -5
In [15]: obj2['d'] = 7
In [18]: obj2[['c','a','d']]
Out[18]:
c 3
a -5
d 7
dtype: int64
NumPy数组运算(如根据布尔型数组进行过滤、标量乘法、应用数学函数等)都会保留索引和值之间的连接:
In [19]: obj2
Out[19]:
d 7
b 7
a -5
c 3
dtype: int64
In [21]: obj2[obj2>0]
Out[21]:
d 7
b 7
c 3
dtype: int64
In [22]: obj2*2
Out[22]:
d 14
b 14
a -10
c 6
dtype: int64
In [23]: np.exp(obj2)
Out[23]:
d 1096.633158
b 1096.633158
a 0.006738
c 20.085537
dtype: float64
还可以将Series看成是一个定长的有序字典,因为它是索引值到数据值的一个映射。
In [24]: 'b' in obj2
Out[24]: True
In [25]: 'e' in obj2
Out[25]: False
如果数据放在一个字典中,也可以通过这个字典来创建Series,索引就是原字典的键:
In [26]: sdata = {'Ohio':35000,'Texas':71000,'Oregon':16000,'Utah':5000}
In [27]: obj3 = pd.Series(sdata)
In [28]: obj3
Out[28]:
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
dtype: int64
再看一个例子:
In [30]: states = ['California','Ohio','Oregon','Texas']
In [31]: obj4 = pd.Series(sdata,index=states)
In [32]: obj4
Out[32]:
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
在这个例子中,sdata跟states索引相匹配的那3个值会被找出来并放到相应的位置上,但由于“California”所对应的sdata值找不到,所以其结果就为NaN(即“非数字”,在pandas中,它用于表示缺失或NA值)。pandas的isnulll
和notnull
函数可用于检测缺失数据:
In [33]: pd.isnull(obj4)
Out[33]:
California True
Ohio False
Oregon False
Texas False
dtype: bool
In [34]: pd.notnull(obj4)
Out[34]:
California False
Ohio True
Oregon True
Texas True
dtype: bool
对于许多应用而言,Series最重要的一个功能是:它在算术运算中会自动对齐不同索引的数据。
In [35]: obj3
Out[35]:
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
dtype: int64
In [36]: obj4
Out[36]:
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
In [37]: obj3 + obj4
Out[37]:
California NaN
Ohio 70000.0
Oregon 32000.0
Texas 142000.0
Utah NaN
dtype: float64
Series对象本身及其索引都有一个name属性,该属性跟pandas其他的关键功能关系非常密切:
In [38]: obj4.name = 'population'
In [39]: obj4.index.name = 'state'
In [40]: obj4
Out[40]:
state
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
Name: population, dtype: float64
Series的索引可以通过赋值的方式就地修改:
In [43]: obj.index = ['Bob','Steve','Jeff','Ryan']
In [44]: obj
Out[44]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64
DataFrame
DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame既有行索引也有列索引,它可以被看作由Series组成的字典(共用同一个索引)。
构造DataFrame的方法有很多,最常用的一种是直接传入一个由等长列表或NumPy数组组成的字典:
In [49]: data = {'state':['Ohio','Ohio','Ohio','Nevada','Nevada'],
...: ...: 'year':[2000,2001,2002,2001,2002],
...: ...: 'pop':[1.5,1.7,3.6,2.4,2.9]}
In [50]: frame = pd.DataFrame(data)
DataFrame会自动加上索引(和Series一样),且全部列会被有序排列:
In [51]: frame
Out[51]:
pop state year
0 1.5 Ohio 2000
1 1.7 Ohio 2001
2 3.6 Ohio 2002
3 2.4 Nevada 2001
4 2.9 Nevada 2002
如果指定了列序列,则DataFrame的列就会按照指定顺序进行排列:
In [52]: pd.DataFrame(data,columns=['year','state','pop'])
Out[52]:
year state pop
0 2000 Ohio 1.5
1 2001 Ohio 1.7
2 2002 Ohio 3.6
3 2001 Nevada 2.4
4 2002 Nevada 2.9
和Series一样,如果传入的列在数据中找不到,就会产生NA值:
In [56]: frame2 = pd.DataFrame(data,columns=['year','state','pop',
...: 'debt'],index=['one','two','three','four','five'])
In [57]: frame2
Out[57]:
year state pop debt
one 2000 Ohio 1.5 NaN
two 2001 Ohio 1.7 NaN
three 2002 Ohio 3.6 NaN
four 2001 Nevada 2.4 NaN
five 2002 Nevada 2.9 NaN
In [58]: frame2.columns
Out[58]: Index(['year', 'state', 'pop', 'debt'], dtype='object')
通过类似字典标记的方式或属性的方式,可以将DataFrame的列获取为一个Series:
In [59]: frame2['state']
Out[59]:
one Ohio
two Ohio
three Ohio
four Nevada
five Nevada
Name: state, dtype: object
In [60]: frame2.year
Out[60]:
one 2000
two 2001
three 2002
four 2001
five 2002
Name: year, dtype: int64
返回的Series拥有原DataFrame相同的索引,且其name属性也已经被相应地设置好了。行也可以通过位置或名称地方式进行获取、比如用索引字段loc。
In [62]: frame2.loc['three']
Out[62]:
year 2002
state Ohio
pop 3.6
debt NaN
Name: three, dtype: object
In [64]: frame2.iloc[0]
Out[64]:
year 2000
state Ohio
pop 1.5
debt NaN
Name: one, dtype: object
列可以通过赋值的方式进行修改。例如,我们可以给空的"debt"列赋上一个标量值或一组值:
In [65]: frame2['debt'] = 16.5
In [66]: frame2
Out[66]:
year state pop debt
one 2000 Ohio 1.5 16.5
two 2001 Ohio 1.7 16.5
three 2002 Ohio 3.6 16.5
four 2001 Nevada 2.4 16.5
five 2002 Nevada 2.9 16.5
In [67]: frame2['debt'] = np.arange(5)
In [68]: frame2
Out[68]:
year state pop debt
one 2000 Ohio 1.5 0
two 2001 Ohio 1.7 1
three 2002 Ohio 3.6 2
four 2001 Nevada 2.4 3
five 2002 Nevada 2.9 4
将列表或数组赋值给某个列时,其长度必须跟DataFrame的长度相匹配。若赋值的是一个Series,就会精确匹配DataFrame的索引,所有的空位都会被填上缺失值:
In [71]: val = pd.Series([-1.2,-1.5,-1.7],index=['two','four','five'])
In [72]: frame2['debt'] = val
In [73]: frame2
Out[73]:
year state pop debt
one 2000 Ohio 1.5 NaN
two 2001 Ohio 1.7 -1.2
three 2002 Ohio 3.6 NaN
four 2001 Nevada 2.4 -1.5
five 2002 Nevada 2.9 -1.7
为不存在的列赋值会创建出一个新列。关键字del用于删除列:
In [82]: frame2['eastern'] = frame2.state == 'Ohio'
In [83]: frame2
Out[83]:
year state pop debt eastern
one 2000 Ohio 1.5 NaN True
two 2001 Ohio 1.7 -1.2 True
three 2002 Ohio 3.6 NaN True
four 2001 Nevada 2.4 -1.5 False
five 2002 Nevada 2.9 -1.7 False
In [84]: del frame2['eastern']
In [85]: frame2.columns
Out[85]: Index(['year', 'state', 'pop', 'debt'], dtype='object')
通过索引方式返回的列是相应数据的视图,不是副本。
另一种常见的数据形式是嵌套字典:
In [86]: pop = {'Nevada':{2001:2.4,2002:2.9},
...: 'Ohio':{2000:1.5,2001:1.7,2002:3.6}}
In [87]: frame3 = pd.DataFrame(pop)
In [88]: frame3
Out[88]:
Nevada Ohio
2000 NaN 1.5
2001 2.4 1.7
2002 2.9 3.6
外层字典的键作为列,内层键作为行索引。
由Series组成的字典差不多也是一样的用法:
In [95]: pdata = {'Ohio':frame3['Ohio'][:-1],
...: 'Nevada':frame3['Nevada'][:2]}
In [96]: pd.DataFrame(pdata)
Out[96]:
Nevada Ohio
2000 NaN 1.5
2001 2.4 1.7
可以输入给DataFrame构造器的数据: