Elasticsearch 7.x 小白到高手spark||flink||scala

elasticsearch 7.0 新特性之Script Sco

2019-04-15  本文已影响869人  郭彦超

首先这个特性处于实验阶段,在之后发布的release版本中可能会被移除,Elastic官方会尽最大努力去修复可能出现的各种问题,因为不受GA保护,所以前期大家尽量不要在生产环境中使用

1、介绍

script_score 是 function score 2.0版本, 允许用户在检索中灵活修改文档score,来实现自己干预结果排名的目的,另外script score性能要高于function score
下面我们通过一个简单的例子来加深理解,通过script score将文档score值修改为“like”字段值的十分之一:

GET /_search
{
    "query" : {
        "script_score" : {
            "query" : {
                "match": { "message": "elasticsearch" }
            },
            "script" : {
                "source" : "doc['likes'].value / 10 "
            }
        }
     }
}

2、操作

{
    "query" : {
        "script_score" : {
            "query" : {
                "match": { "message": "elasticsearch" }
            },
            "script" : {
                "source" : "doc['likes'].value + _score "
            }
        }
     }
}
{
  "query": {
    "script_score": {
      "query": {
        "match_all": {}
      },
      "script": {
        "source": "cosineSimilarity(params.queryVector, doc['my_dense_vector'])",
        "params": {
          "queryVector": [4, 3.4, -0.2]  
        }
      }
    }
  }
}

如果是计算sparse_vector field的cosine相似度:

{
  "query": {
    "script_score": {
      "query": {
        "match_all": {}
      },
      "script": {
        "source": "cosineSimilaritySparse(params.queryVector, doc['my_sparse_vector'])",
        "params": {
          "queryVector": {"2": 0.5, "10" : 111.3, "50": -1.3, "113": 14.8, "4545": 156.0}
        }
      }
    }
  }
}

再如,在dense_vector field上计算给定文档与索引库文档点积的距离时:

{
  "query": {
    "script_score": {
      "query": {
        "match_all": {}
      },
      "script": {
        "source": "dotProduct(params.queryVector, doc['my_dense_vector'])",
        "params": {
          "queryVector": [4, 3.4, -0.2]
        }
      }
    }
  }
}

同理,在sparse_vector上进行点积计算,需要使用dotProductSparse 函数:

{
  "query": {
    "script_score": {
      "query": {
        "match_all": {}
      },
      "script": {
        "source": "dotProductSparse(params.queryVector, doc['my_sparse_vector'])",
        "params": {
          "queryVector": {"2": 0.5, "10" : 111.3, "50": -1.3, "113": 14.8, "4545": 156.0}
        }
      }
    }
  }
}

上述vector查询需要注意的时,如果vector field缺失数值时,或者查询语句中vector规格与索引库字段的vector规格不一致,那么该文档的计算结果会是0

sigmoid(value, k, a) = value^a/ (k^a + value^a)  
"script" : {
    "source" : "sigmoid(doc['likes'].value, 2, 1)"
}
"script" : {
    "source" : "decayNumericLinear(params.origin, params.scale, params.offset, params.decay, doc['dval'].value)",
    "params": { 
        "origin": 20,
        "scale": 10,
        "decay" : 0.5,
        "offset" : 0
    }
}
"script" : {
    "source" : "decayGeoExp(params.origin, params.scale, params.offset, params.decay, doc['location'].value)",
    "params": {
        "origin": "40, -70.12",
        "scale": "200km",
        "offset": "0km",
        "decay" : 0.2
    }
}
"script" : {
    "source" : "decayDateGauss(params.origin, params.scale, params.offset, params.decay, doc['date'].value)",
    "params": {
        "origin": "2008-01-01T01:00:00Z",
        "scale": "1h",
        "offset" : "0",
        "decay" : 0.5
    }
}

需要注意的是上述几个衰减函数中都用到了params参数,而该参数官方说明是不支持动态改变数值的,个人觉得不是很好用,后期应该还会优化

script_score:function score中的script_score 函数部分不需要进行修改,可以直接拷贝到script score里运行。

weight:

"script" : {
    "source" : "params.weight * _score",
    "params": {
        "weight": 2
    }
}

random_score:

"script" : {
    "source" : "randomNotReproducible()"
}

field_value_factor:


"script" : {
    "source" : "Math.log10((doc['field'].size() == 0 ? 1 : doc['field'].value()) * params.factor)",
    params" : {
        "factor" : 5
    }
}

其中 Math.log10((doc['field'].size() == 0 是为了排除因field missing引起的异常,field_value_factor 里modifier(权重调控函数)可以通过下面函数实现:

名称 实现
none -
log Math.log10(doc['f'].value)
log1p Math.log10(doc['f'].value + 1)
log2p Math.log10(doc['f'].value + 2)
ln Math.log(doc['f'].value)
ln1p Math.log(doc['f'].value + 1)
ln2p Math.log(doc['f'].value + 2)
square Math.pow(doc['f'].value, 2)
sqrt Math.sqrt(doc['f'].value)
reciprocal 1.0 / doc['f'].value

上一篇 下一篇

猜你喜欢

热点阅读