iOS | H.264编解码(VideoToolbox硬编解码)

2018-12-04  本文已影响0人  Leon_520

介绍

iOS 8.0 之后,苹果开放了硬解码和硬解码的API。VideoToolbox 是一套纯C语言API。其中包含了很多C语言函数; VideoToolbox是一个低级框架,可直接访问硬件编码器和解码器。它提供视频压缩和解压缩服务,本文主要针对H.264硬编码来进行编解码说明.关于H.264相关知识请参考H.264介绍&编码原理本文不做过多解释!

编码

VideoToolbox编码:

1. 首先需要导入#import <VideoToolbox/VideoToolbox.h>

2. 初始化编码会话

@property (nonatomic, assign) VTCompressionSessionRef compressionSession;

// 初始化编码器
- (void)setupVideoSession {
    
    // 1.用于记录当前是第几帧数据
    self.frameID = 0;
    
    // 2.录制视频的宽度&高度,根据实际需求修改
    int width = 720;
    int height = 1280;
    
    // 3.创建CompressionSession对象,该对象用于对画面进行编码
    OSStatus status = VTCompressionSessionCreate(NULL,     // 会话的分配器。传递NULL以使用默认分配器。
                                                 width,    // 帧的宽度,以像素为单位。
                                                 height,   // 帧的高度,以像素为单位。
                                                 kCMVideoCodecType_H264,   // 编解码器的类型,表示使用h.264进行编码
                                                 NULL,   // 指定必须使用的特定视频编码器。传递NULL让视频工具箱选择编码器。
                                                 NULL,   // 源像素缓冲区所需的属性,用于创建像素缓冲池。如果不希望视频工具箱为您创建一个,请传递NULL
                                                 NULL,   // 压缩数据的分配器。传递NULL以使用默认分配器。
                                                 didCompressH264,          // 当一次编码结束会在该函数进行回调,可以在该函数中将数据,写入文件中
                                                 (__bridge void *)(self),  // outputCallbackRefCon
                                                 &_compressionSession);    // 指向一个变量以接收的压缩会话。
    if (status != 0){
        NSLog(@"H264: session 创建失败");
        return ;
    }
    
    // 4.设置实时编码输出(直播必然是实时输出,否则会有延迟)
    VTSessionSetProperty(_compressionSession, kVTCompressionPropertyKey_RealTime, kCFBooleanTrue);
    VTSessionSetProperty(_compressionSession, kVTCompressionPropertyKey_ProfileLevel, kVTProfileLevel_H264_Baseline_AutoLevel);
    
    // 5.设置关键帧(GOPsize)间隔
    int frameInterval = 60;
    CFNumberRef  frameIntervalRef = CFNumberCreate(kCFAllocatorDefault, kCFNumberIntType, &frameInterval);
    VTSessionSetProperty(self.compressionSession, kVTCompressionPropertyKey_MaxKeyFrameInterval, frameIntervalRef);
    
    // 6.设置期望帧率(每秒多少帧,如果帧率过低,会造成画面卡顿)
    int fps = 24;
    CFNumberRef fpsRef = CFNumberCreate(kCFAllocatorDefault, kCFNumberIntType, &fps);
    VTSessionSetProperty(self.compressionSession, kVTCompressionPropertyKey_ExpectedFrameRate, fpsRef);
    
    // 7.设置码率(码率: 编码效率, 码率越高,则画面越清晰, 如果码率较低会引起马赛克 --> 码率高有利于还原原始画面,但是也不利于传输)
    int bitRate = width * height * 3 * 4 * 8;
    CFNumberRef bitRateRef = CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt32Type, &bitRate);
    VTSessionSetProperty(self.compressionSession, kVTCompressionPropertyKey_AverageBitRate, bitRateRef);
    
    // 8.设置码率,均值,单位是byte 这是一个算法
    NSArray *limit = @[@(bitRate * 1.5/8), @(1)];
    VTSessionSetProperty(self.compressionSession, kVTCompressionPropertyKey_DataRateLimits, (__bridge CFArrayRef)limit);
    
    // 9.基本设置结束, 准备进行编码
    VTCompressionSessionPrepareToEncodeFrames(_compressionSession);
}

3. 编码完成回调函数

// 编码完成回调
void didCompressH264(void *outputCallbackRefCon, void *sourceFrameRefCon, OSStatus status, VTEncodeInfoFlags infoFlags, CMSampleBufferRef sampleBuffer) {
    
    // 1.判断状态是否等于没有错误
    if (status != noErr) {
        return;
    }
    if (!CMSampleBufferDataIsReady(sampleBuffer)) {
        NSLog(@"didCompressH264 data is not ready ");
        return;
    }
    
    // 2.根据传入的参数获取对象
    VideoH264EnCode* encoder = (__bridge VideoH264EnCode*)outputCallbackRefCon;
    
    // 3.判断是否是关键帧
    bool isKeyframe = !CFDictionaryContainsKey( (CFArrayGetValueAtIndex(CMSampleBufferGetSampleAttachmentsArray(sampleBuffer, true), 0)), kCMSampleAttachmentKey_NotSync);
    
    // 判断当前帧是否为关键帧
    // 获取sps & pps数据
    if (isKeyframe)
    {
        // 获取编码后的信息(存储于CMFormatDescriptionRef中)
        CMFormatDescriptionRef format = CMSampleBufferGetFormatDescription(sampleBuffer);
        
        // 获取SPS信息
        size_t sparameterSetSize, sparameterSetCount;
        const uint8_t *sparameterSet;
        CMVideoFormatDescriptionGetH264ParameterSetAtIndex(format, 0, &sparameterSet, &sparameterSetSize, &sparameterSetCount, 0 );
        
        // 获取PPS信息
        size_t pparameterSetSize, pparameterSetCount;
        const uint8_t *pparameterSet;
        CMVideoFormatDescriptionGetH264ParameterSetAtIndex(format, 1, &pparameterSet, &pparameterSetSize, &pparameterSetCount, 0 );
        
        // 装sps/pps转成NSData
        NSData *sps = [NSData dataWithBytes:sparameterSet length:sparameterSetSize];
        NSData *pps = [NSData dataWithBytes:pparameterSet length:pparameterSetSize];
        
        // 写入文件
        [encoder gotSpsPps:sps pps:pps];
    }
    
    // 获取数据块
    CMBlockBufferRef dataBuffer = CMSampleBufferGetDataBuffer(sampleBuffer);
    size_t length, totalLength;
    char *dataPointer;
    OSStatus statusCodeRet = CMBlockBufferGetDataPointer(dataBuffer, 0, &length, &totalLength, &dataPointer);
    if (statusCodeRet == noErr) {
        size_t bufferOffset = 0;
        static const int AVCCHeaderLength = 4; // 返回的nalu数据前四个字节不是0001的startcode,而是大端模式的帧长度length
        
        // 循环获取nalu数据
        while (bufferOffset < totalLength - AVCCHeaderLength) {
            uint32_t NALUnitLength = 0;
            // Read the NAL unit length
            memcpy(&NALUnitLength, dataPointer + bufferOffset, AVCCHeaderLength);
            
            // 从大端转系统端
            NALUnitLength = CFSwapInt32BigToHost(NALUnitLength);
            
            NSData* data = [[NSData alloc] initWithBytes:(dataPointer + bufferOffset + AVCCHeaderLength) length:NALUnitLength];
            [encoder gotEncodedData:data isKeyFrame:isKeyframe];
            
            // 移动到写一个块,转成NALU单元
            // Move to the next NAL unit in the block buffer
            bufferOffset += AVCCHeaderLength + NALUnitLength;
        }
    }
}

4. 获取SPS/PPS,以及I,P,B 帧数据,并将其通过 block 回调

// 获取 sps 以及 pps,并进行StartCode
- (void)gotSpsPps:(NSData*)sps pps:(NSData*)pps{
    
    // 拼接NALU的 StartCode,默认规定使用 00000001
    const char bytes[] = "\x00\x00\x00\x01";
    size_t length = (sizeof bytes) - 1;
    NSData *ByteHeader = [NSData dataWithBytes:bytes length:length];

    NSMutableData *h264Data = [[NSMutableData alloc] init];
    [h264Data appendData:ByteHeader];
    [h264Data appendData:sps];
    if (self.h264DataBlock) {
        self.h264DataBlock(h264Data);
    }
    
    [h264Data resetBytesInRange:NSMakeRange(0, [h264Data length])];
    [h264Data setLength:0];
    [h264Data appendData:ByteHeader];
    [h264Data appendData:pps];
    if (self.h264DataBlock) {
        self.h264DataBlock(h264Data);
    }
}

- (void)gotEncodedData:(NSData*)data isKeyFrame:(BOOL)isKeyFrame{
    
    const char bytes[] = "\x00\x00\x00\x01";
    size_t length = (sizeof bytes) - 1;     //string literals have implicit trailing '\0'
    NSData *ByteHeader = [NSData dataWithBytes:bytes length:length];
    
    NSMutableData *h264Data = [[NSMutableData alloc] init];
    [h264Data appendData:ByteHeader];
    [h264Data appendData:data];
    if (self.h264DataBlock) {
        self.h264DataBlock(h264Data);
    }
}

5. 通过传入原始帧数据进行调用并回调

// 将 sampleBuffer(摄像头捕捉数据,原始帧数据) 编码为H.264
- (void)encodeSampleBuffer:(CMSampleBufferRef)sampleBuffer H264DataBlock:(void (^)(NSData * _Nonnull))h264DataBlock{
    
    if (!self.compressionSession) {
        return;
    }
    //  1.保存 block 块
    self.h264DataBlock = h264DataBlock;
    
    //  2.将sampleBuffer转成imageBuffer
    CVImageBufferRef imageBuffer = (CVImageBufferRef)CMSampleBufferGetImageBuffer(sampleBuffer);
    
    //  3.根据当前的帧数,创建CMTime的时间
    CMTime presentationTimeStamp = CMTimeMake(self.frameID++, 1000);
    VTEncodeInfoFlags flags;
    
    //  4.开始编码该帧数据
    OSStatus statusCode = VTCompressionSessionEncodeFrame(
                                                          self.compressionSession,
                                                          imageBuffer,
                                                          presentationTimeStamp,
                                                          kCMTimeInvalid,
                                                          NULL,
                                                          (__bridge void * _Nullable)(self),
                                                          &flags
                                                          );
    
    if (statusCode != noErr) {
        NSLog(@"H264: VTCompressionSessionEncodeFrame failed with %d", (int)statusCode);
        VTCompressionSessionInvalidate(self.compressionSession);
        CFRelease(self.compressionSession);
        self.compressionSession = NULL;
        return;
    }
}

通过上述几个方法,可以完成原始帧数据的H.264编码工作,并将其回调给调用者, 具体如何拼接以及使用,根据自身项目需求来进行使用

VideoToolbox解码:

解码与编码正好相反,在拿到H.264的每一帧数据后进行解码操作,最后获取 原始帧数据进行展示

1. 初始化解码器

- (BOOL)initH264Decoder {
    if(_deocderSession) {
        return YES;
    }
    const uint8_t* const parameterSetPointers[2] = { _sps, _pps };
    const size_t parameterSetSizes[2] = { _spsSize, _ppsSize };
    OSStatus status = CMVideoFormatDescriptionCreateFromH264ParameterSets(kCFAllocatorDefault,
                                                                          2, //param count
                                                                          parameterSetPointers,
                                                                          parameterSetSizes,
                                                                          4, //nal start code size
                                                                          &_decoderFormatDescription);
    
    if(status == noErr) {
        NSDictionary* destinationPixelBufferAttributes = @{
                                                           (id)kCVPixelBufferPixelFormatTypeKey : [NSNumber numberWithInt:kCVPixelFormatType_420YpCbCr8BiPlanarVideoRange], //硬解必须是 kCVPixelFormatType_420YpCbCr8BiPlanarVideoRange 或者是kCVPixelFormatType_420YpCbCr8Planar
                                                           //这里款高和编码反的
                                                           (id)kCVPixelBufferOpenGLCompatibilityKey : [NSNumber numberWithBool:YES]
                                                           };
        
        
        VTDecompressionOutputCallbackRecord callBackRecord;
        callBackRecord.decompressionOutputCallback = didDecompress;
        callBackRecord.decompressionOutputRefCon = (__bridge void *)self;
        status = VTDecompressionSessionCreate(kCFAllocatorDefault,
                                              _decoderFormatDescription,
                                              NULL,
                                              (__bridge CFDictionaryRef)destinationPixelBufferAttributes,
                                              &callBackRecord,
                                              &_deocderSession);
        VTSessionSetProperty(_deocderSession, kVTDecompressionPropertyKey_ThreadCount, (__bridge CFTypeRef)[NSNumber numberWithInt:1]);
        VTSessionSetProperty(_deocderSession, kVTDecompressionPropertyKey_RealTime, kCFBooleanTrue);
    } else {
        NSLog(@"IOS8VT: reset decoder session failed status=%d", (int)status);
    }
    
    return YES;
}

2. 解码操作

// 解码操作,外部调用
- (void)decodeNalu:(uint8_t *)frame size:(uint32_t) frameSize{
    
    int nalu_type = (frame[4] & 0x1F);
    CVPixelBufferRef pixelBuffer = NULL;
    uint32_t nalSize = (uint32_t)(frameSize - 4);
    uint8_t *pNalSize = (uint8_t*)(&nalSize);
    frame[0] = *(pNalSize + 3);
    frame[1] = *(pNalSize + 2);
    frame[2] = *(pNalSize + 1);
    frame[3] = *(pNalSize);
    
    //传输的时候。关键帧不能丢数据 否则绿屏   B/P可以丢  这样会卡顿
    switch (nalu_type)
    {
        case 0x05:
            //  关键帧
            if([self initH264Decoder])
            {
                pixelBuffer = [self decode:frame withSize:frameSize];
            }
            break;
        case 0x07:
            //  sps
            _spsSize = frameSize - 4;
            _sps = malloc(_spsSize);
            memcpy(_sps, &frame[4], _spsSize);
            break;
        case 0x08:
        {
            //  pps
            _ppsSize = frameSize - 4;
            _pps = malloc(_ppsSize);
            memcpy(_pps, &frame[4], _ppsSize);
            break;
        }
        default:
        {
            //  B/P其他帧
            if([self initH264Decoder]){
                pixelBuffer = [self decode:frame withSize:frameSize];
            }
            break;
        }
    }
}


- (CVPixelBufferRef)decode:(uint8_t *)frame withSize:(uint32_t)frameSize{
    CVPixelBufferRef outputPixelBuffer = NULL;
    
    CMBlockBufferRef blockBuffer = NULL;
    OSStatus status  = CMBlockBufferCreateWithMemoryBlock(NULL,
                                                          (void *)frame,
                                                          frameSize,
                                                          kCFAllocatorNull,
                                                          NULL,
                                                          0,
                                                          frameSize,
                                                          FALSE,
                                                          &blockBuffer);
    if(status == kCMBlockBufferNoErr) {
        CMSampleBufferRef sampleBuffer = NULL;
        const size_t sampleSizeArray[] = {frameSize};
        status = CMSampleBufferCreateReady(kCFAllocatorDefault,
                                           blockBuffer,
                                           _decoderFormatDescription ,
                                           1, 0, NULL, 1, sampleSizeArray,
                                           &sampleBuffer);
        if (status == kCMBlockBufferNoErr && sampleBuffer) {
            VTDecodeFrameFlags flags = 0;
            VTDecodeInfoFlags flagOut = 0;
            OSStatus decodeStatus = VTDecompressionSessionDecodeFrame(_deocderSession,
                                                                      sampleBuffer,
                                                                      flags,
                                                                      &outputPixelBuffer,
                                                                      &flagOut);
            
            if(decodeStatus == kVTInvalidSessionErr) {
                NSLog(@"IOS8VT: Invalid session, reset decoder session");
            } else if(decodeStatus == kVTVideoDecoderBadDataErr) {
                NSLog(@"IOS8VT: decode failed status=%d(Bad data)", (int)decodeStatus);
            } else if(decodeStatus != noErr) {
                NSLog(@"IOS8VT: decode failed status=%d", (int)decodeStatus);
            }
            CFRelease(sampleBuffer);
        }
        CFRelease(blockBuffer);
    }
    return outputPixelBuffer;
}

3. 解码完成回调

// 解码回调函数
static void didDecompress( void *decompressionOutputRefCon, void *sourceFrameRefCon, OSStatus status, VTDecodeInfoFlags infoFlags, CVImageBufferRef pixelBuffer, CMTime presentationTimeStamp, CMTime presentationDuration ){
    CVPixelBufferRef *outputPixelBuffer = (CVPixelBufferRef *)sourceFrameRefCon;
    *outputPixelBuffer = CVPixelBufferRetain(pixelBuffer);
    VideoH264Decoder *decoder = (__bridge VideoH264Decoder *)decompressionOutputRefCon;
    
    if ([decoder.delegate respondsToSelector:@selector(decoder:didDecodingFrame:)]) {
        [decoder.delegate decoder: decoder didDecodingFrame:pixelBuffer];
    }
}

4. 通过 OpenGL 进行 帧数据展示

代码就不贴出来了,可以通过 demo 进行查看.

本文主要通过 VideoToolbox 对 iPhone 手机摄像头拍摄的视频流进行 编码和解码,并进行展示,仅仅提供了基本的编解码功能,具体在项目中如何使用还要根据自身项目来定,关于视频流传输,可以参考 Socket & CocoaAsyncSocket介绍与使用,以及如何处理粘包等问题;

Demo 地址: https://github.com/liuchuan-alex/VideoToolBox

更详细使用请查看: VideoToolbox官方说明文档

上一篇 下一篇

猜你喜欢

热点阅读