实现表达式求导

2021-04-17  本文已影响0人  星光下的胖子

思路^_^

1.创建表达式类(Exp、Const、Variable),并实现eval(计算表达式的值)和deriv(求导)操作。
# 1.1 定义表达式
class Exp(object):
    def eval(self, **kwargs):  # 计算表达式的值
        pass
    
    def deriv(self, x):  # 计算表达式的导数
        pass
    
    def __add__(self, other):  # 运算符重载 e1 + e2
        return Add(self, other).simplify()
    
    def __sub__(self, other):  # 运算符重载 e1 - e2
        return Sub(self, other).simplify()
    
    def __mul__(self, other):  # 运算符重载 e1 * e2
        return Mul(self, other).simplify()
    
    def __truediv__(self, other):  # 运算符重载 e1 / e2
        return TrueDiv(self, other).simplify()
    
    def __neg__(self):  # 运算符重载 - e1
        return Neg(self).simplify()
    
    def __pow__(self, power):  # 运算符重载 e1 ** e2
        return Pow(self, power).simplify()
    
    def __ln__(self):  # 自定义的ln运算符
        return Ln(self).simplify()
# 1.2 定义常量表达式
class Const(Exp):
    def __init__(self, value):
        self.value = value
        
    def eval(self, **kwargs):  # 计算表达式的值
        return self.value
    
    def deriv(self, x):  # 计算表达式的导数
        return Const(0)
    
    def __repr__(self):  # print时自动调用
        return f"{self.value}"
# 1.3 定义变量表达式
class Variable(Exp):
    def __init__(self, name):
        self.name = name
        
    def eval(self, **kwargs):  # 计算表达式的值
        if self.name in kwargs:
            return kwargs[self.name]
        raise NameError(f"name {self.name} is not found")
    
    def deriv(self, x):  # 计算表达式的导数
        name = self.get_param_name(x)
        return Const(1 if name == self.name else 0)
    
    def __repr__(self):  # print时自动调用
        return self.name
    
    def get_param_name(self, x):
        if isinstance(x, Variable):
            return x.name
        if isinstance(x, str):
            return x
        raise TypeError(f"{x} is neither Variable nor str")
2.实现表达式的简单操作:加运算、取负运算、减运算、乘运算、除运算。
# 2.1 简单操作——加运算
class Add(Exp):
    def __init__(self, left, right):
        self.left = left
        self.right = right
        
    def eval(self, **kwargs):
        return self.left.eval(**kwargs) + self.right.eval(**kwargs)
    
    def deriv(self, x):
        return self.left.deriv(x) + self.right.deriv(x)
    
    def __repr__(self):  # 为了可读性,判断是否要加括号()
        if isinstance(self.left, (Const, Variable)):
            if isinstance(self.right, Const):
                if self.right.value < 0:
                    return f"{self.left} - {-self.right.value}"
                else:
                    return f"{self.left} + {self.right}"
            elif isinstance(self.right, Variable):
                return f"{self.left} + {self.right}"
            else:
                return f"{self.left} + ({self.right})"
        elif isinstance(self.right, (Const, Variable)):
            if isinstance(self.right, Const) and self.right.value < 0:
                return f"({self.left}) - {-self.right.value}"
            else:
                return f"({self.left}) + {self.right}"
        else:
            return f"({self.left}) + ({self.right})"
    
    def simplify(self):  # 简化表达式
        if isinstance(self.left, Const):
            if self.left.value == 0:
                return self.right
            if isinstance(self.right, Const):
                return Const(self.left.value + self.right.value)
        elif isinstance(self.right, Const) and self.right.value == 0:
            return self.left
        return self
# 2.2 简单操作——取负运算
class Neg(Exp):
    def __init__(self, exp):
        self.exp = exp
        
    def eval(self, **kwargs):
        return - self.exp.eval(**kwargs)
    
    def deriv(self, x):
        return - self.exp.deriv(x)
    
    def __repr__(self):  # 为了可读性,判断是否要加括号()
        if isinstance(self.exp, Const):
            return f"{-self.exp.value}"
        if isinstance(self.exp, Variable):
            return f"-{self.exp}"
        return f"(-{self.exp})"
    
    def simplify(self):  # 简化表达式
        if isinstance(self.exp, Const):
            return Const(-self.exp.value)
        return self
# 2.3 简单操作——减运算
class Sub(Exp):
    def __init__(self, left, right):
        self.left = left
        self.right = right
        
    def eval(self, **kwargs):
        return self.left.eval(**kwargs) - self.right.eval(**kwargs)
    
    def deriv(self, x):
        return self.left.deriv(x) - self.right.deriv(x)
    
    def __repr__(self):  # 为了可读性,判断是否要加括号()
        if isinstance(self.left, (Const, Variable)):
            if isinstance(self.right, Const):
                if self.right.value < 0:
                    return f"{self.left} + {-self.right.value}"
                else:
                    return f"{self.left} - {self.right}"
            elif isinstance(self.right, Variable):
                return f"{self.left} - {self.right}"
            else:
                return f"{self.left} - ({self.right})"
        elif isinstance(self.right, (Const, Variable)):
            if isinstance(self.right, Const) and self.right.value < 0:
                return f"({self.left}) + {-self.right.value}"
            else:
                return f"({self.left}) - {self.right}"
        else:
            return f"({self.left}) - ({self.right})"
    
    def simplify(self):  # 简化表达式
        if isinstance(self.left, Const):
            if self.left.value == 0:
                return - self.right
            if isinstance(self.right, Const):
                return Const(self.left.value - self.right.value)
        elif isinstance(self.right, Const) and self.right.value == 0:
            return self.left
        return self
# 2.4 简单操作——乘运算
class Mul(Exp):
    def __init__(self, left, right):
        self.left = left
        self.right = right
        
    def eval(self, **kwargs):
        return self.left.eval(**kwargs) * self.right.eval(**kwargs)
    
    def deriv(self, x):
        u, v = self.left, self.right
        # (uv)‘=u‘v + uv'
        return u.deriv(x) * v + u * v.deriv(x)
    
    def __repr__(self):  # 为了可读性,判断是否要加括号()
        if isinstance(self.left, (Const, Variable)):
            if isinstance(self.right, Const):
                if self.right.value < 0:
                     return f"{self.left} * ({self.right.value})"
                else:
                    return f"{self.left} * {self.right}"
            elif isinstance(self.right, Variable):
                return f"{self.left} * {self.right}"
            else:
                return f"{self.left} * ({self.right})"
        elif isinstance(self.right, (Const, Variable)):
            if isinstance(self.right, Const) and self.right.value < 0:
                return f"({self.left}) * ({self.right.value})"
            else:
                return f"({self.left}) * {self.right}"
        else:
            return f"({self.left}) * ({self.right})"
    
    def simplify(self):  # 简化表达式
        if isinstance(self.left, Const):
            if self.left.value == 0:
                return Const(0)
            if self.left.value == 1:
                return self.right
            if isinstance(self.right, Const):
                return Const(self.left.value * self.right.value)
        elif isinstance(self.right, Const):
            if self.right.value == 0:
                return Const(0)
            if self.right.value == 1:
                return self.left
        return self
# 2.5 简单操作——除运算
class TrueDiv(Exp):
    def __init__(self, left, right):
        self.left = left
        self.right = right
        
    def eval(self, **kwargs):
        return self.left.eval(**kwargs) / self.right.eval(**kwargs)
    
    def deriv(self, x):
        u, v = self.left, self.right
        # (u/v)‘=(u‘v - uv')/(v*v)
        return (u.deriv(x) * v - u * v.deriv(x)) / (v * v)
    
    def __repr__(self):  # 为了可读性,判断是否要加括号()
        if isinstance(self.left, (Const, Variable)):
            if isinstance(self.right, Const):
                if self.right.value < 0:
                     return f"{self.left} / ({self.right.value})"
                else:
                    return f"{self.left} / {self.right}"
            elif isinstance(self.right, Variable):
                return f"{self.left} / {self.right}"
            else:
                return f"{self.left} / ({self.right})"
        elif isinstance(self.right, (Const, Variable)):
            if isinstance(self.right, Const) and self.right.value < 0:
                return f"({self.left}) / ({self.right.value})"
            else:
                return f"({self.left}) / {self.right}"
        else:
            return f"({self.left}) / ({self.right})"
    
    def simplify(self):  # 简化表达式
        if isinstance(self.left, Const):
            if self.left.value == 0:
                return Const(0)
            if isinstance(self.right, Const):
                return Const(self.left.value / self.right.value)
        elif isinstance(self.right, Const):
            if self.right.value == 0:
                raise ZeroDivisionError("division by zero")
            if self.right.value == 1:
                return self.left
        return self
3.添加复杂操作:对数运算、幂运算。
# 3.1 复杂操作——对数运算
import math

# 自定义ln运算
def ln(exp):
    return exp.__ln__()

class Ln(Exp):
    def __init__(self, antilog):
        self.antilog = antilog  # 真数
        
    def eval(self, **kwargs):
        # math.log(x, [base=math.e])
        x = self.antilog.eval(**kwargs)
        if x <= 0:
            raise ValueError("the antilog must be greater than zero")
        return math.log(x)
    
    def deriv(self, x):
        # (lnf)‘=f‘/f
        return self.antilog.deriv(x) / self.antilog
    
    def __repr__(self):  # 为了可读性,判断是否要加括号()
        if isinstance(self.antilog, (Const, Variable)):
            return f"ln{self.antilog}"
        return f"ln({self.antilog})"
    
    def simplify(self):  # 简化表达式
        if isinstance(self.antilog, Const) and self.antilog.value <= 0:
            raise ValueError("the antilog must be greater than zero")
        return self
# 3.2 复杂操作——幂运算
class Pow(Exp):
    def __init__(self, base, power):
        self.base = base
        self.power = power
        
    def eval(self, **kwargs):
        return self.base.eval(**kwargs) ** self.power.eval(**kwargs)
    
    def deriv(self, x):
        f, g = self.base, self.power
        # (f^g)‘=f^g*(g‘*ln(f) + g*f‘/f)
        if g.deriv(x) == 0:
            return f ** g * (g * f.deriv(x) / f)
        return f ** g * (g.deriv(x) * ln(f) + g * f.deriv(x) / f)
    
    def __repr__(self):  # 为了可读性,判断是否要加括号()
        if isinstance(self.base, Variable) or (isinstance(self.base, Const) and self.base.value >= 0):
            if isinstance(self.power, Const):
                if self.power.value < 0:
                    return f"{self.base} ** ({self.power.value})"
                else:
                    return f"{self.base} ** {self.power}"
            elif isinstance(self.power, Variable):
                return f"{self.base} ** {self.power}"
            else:
                return f"{self.base} ** ({self.power})"
        elif isinstance(self.power, (Const, Variable)):
            if isinstance(self.power, Const) and self.power.value < 0:
                return f"({self.base}) ** ({self.power.value})"
            else:
                return f"({self.base}) ** {self.power}"
        else:
            return f"({self.base}) ** ({self.power})"
    
    def simplify(self):  # 简化表达式
        if isinstance(self.base, Const):
            if self.base.value == 0:
                return Const(0)
            elif self.base.value == 1:
                return Const(1)
#             elif self.base.value < 0:
#                 raise ValueError("the base cannot be less than zero")
            elif isinstance(self.power, Const):
                return Const(self.base.value ** self.power.value)
        elif isinstance(self.power, Const):
            if self.power.value == 0:
                return Const(1)
            if self.power.value == 1:
                return self.base
        return self
上一篇下一篇

猜你喜欢

热点阅读