走进转录组RNASeq 数据分析

转录组分析-DESeq2

2019-04-26  本文已影响43人  Ruta
  1. DESeq2 用来寻找差异基因
    2.代码及结果展示

setwd("Desktop/new/DEGenes")
library(tidyverse)
library(ashr)
library(DESeq2)

导入数据------------------------------

mycounts <- read_csv("countData_4.csv")
metadata <- read_csv("colData_4.csv")

mycounts <- as.data.frame(mycounts)
metadata <- as.data.frame(metadata)

mycounts
metadata

class(mycounts)
class(metadata)

检查数据匹配性-----------------------

names(mycounts)[-1]
metadataid names(mycounts)[-1]==metadataid
all(names(mycounts)[-1]==metadata$id)

构建dds------------------------------

dds <- DESeqDataSetFromMatrix(countData = mycounts,
colData = metadata,
design = ~ phase,
tidy=TRUE)
ddsphase <- factor(ddsphase,levels = c("control","first","first_R","second","second_R","fourth")) # 因子化

keep <- rowSums(counts(dds)) >= 10 # pre-filtering
dds <- dds[keep,]

差异分析--------------------------

dds <- DESeq(dds)

dds

sizeFactors(dds)
dispersions(dds)
resultsNames(dds)

差异分析结果展示/主成分分析------------

vsdata <- vst(dds, blind=FALSE)
p <- plotPCA(vsdata, intgroup="phase")
p

一张配色敲好看的主成分分析图~


Rplot.png

显示全部的normalize后的表达量数据--------------

normalized.data <- counts(dds,normalized = TRUE)

write.csv(normalized.data,file = "normalized expression data_group4.csv")

差异分析结果展示/DEGenes identification---------

p-values and adjusted p-values------------------

res1-------------------------

res1 <- results(dds,contrast = c("phase","first","control"),alpha=0.05) # How many adjusted p-values were less than 0.05?
res1 <- res1[order(res1padj),] # order our results table by the smallest padj mcols(res1)description # More information on results columns
plotMA(res1, ylim=c(-5,5),main = "first vs control(unshrinked)")
resLFC <- lfcShrink(dds,contrast = c("phase","first","control"), type="ashr")
plotMA(resLFC,ylim=c(-5,5),main = "first vs control")
summary(res1)
sum(res1$padj < 0.05, na.rm=TRUE)
write.csv(as.data.frame(res1), file="first vs control_all_DEgenes.csv") # Exporting results to CSV files
resSig1 <- subset(res1, padj < 0.05)
write.csv(as.data.frame(resSig1), file="first vs control_significant_DEgenes.csv") # Exporting results to CSV files

上一篇 下一篇

猜你喜欢

热点阅读