迁移学习3-带回调函数
2019-08-06 本文已影响0人
poteman
- 导入所需的包
# Import all the necessary files!
import os
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras import Model
- 下载并调用预训练模型
# Download the inception v3 weights
!wget --no-check-certificate \
https://storage.googleapis.com/mledu-datasets/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5 \
-O /tmp/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5
# Import the inception model
from tensorflow.keras.applications.inception_v3 import InceptionV3
# Create an instance of the inception model from the local pre-trained weights
local_weights_file = '/tmp/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5'
pre_trained_model = InceptionV3(input_shape = (150, 150, 3),
include_top = False,
weights = None)
pre_trained_model.load_weights(local_weights_file)
# Make all the layers in the pre-trained model non-trainable
for layer in pre_trained_model.layers:
layer.trainable = False
# Print the model summary
pre_trained_model.summary()
- 处理预处理模型
last_layer = pre_trained_model.get_layer('mixed7')
print('last layer output shape: ', last_layer.output_shape)
last_output = last_layer.output
- 定义回调函数
# Define a Callback class that stops training once accuracy reaches 99.9%
class myCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if(logs.get('acc')>0.999):
print("\nReached 99.9% accuracy so cancelling training!")
self.model.stop_training = True
- 定义分类器
from tensorflow.keras.optimizers import RMSprop
# Flatten the output layer to 1 dimension
x = layers.Flatten()(last_output)
# Add a fully connected layer with 1,024 hidden units and ReLU activation
x = layers.Dense(1024, activation='relu')(x)
# Add a dropout rate of 0.2
x = layers.Dropout(0.2)(x)
# Add a final sigmoid layer for classification
x = layers.Dense (1, activation='sigmoid')(x)
model = Model( pre_trained_model.input, x)
model.compile(optimizer = RMSprop(lr=0.0001),
loss = 'binary_crossentropy',
metrics = ['acc'])
model.summary()
- 获取并处理数据集
# Get the Horse or Human dataset
!wget --no-check-certificate https://storage.googleapis.com/laurencemoroney-blog.appspot.com/horse-or-human.zip -O /tmp/horse-or-human.zip
# Get the Horse or Human Validation dataset
!wget --no-check-certificate https://storage.googleapis.com/laurencemoroney-blog.appspot.com/validation-horse-or-human.zip -O /tmp/validation-horse-or-human.zip
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import os
import zipfile
local_zip = '//tmp/horse-or-human.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('/tmp/training')
zip_ref.close()
local_zip = '//tmp/validation-horse-or-human.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('/tmp/validation')
zip_ref.close()
train_horses_dir = os.path.join(train_dir, 'horses') # Directory with our training horse pictures
train_humans_dir = os.path.join(train_dir, 'humans') # Directory with our training humans pictures
validation_horses_dir = os.path.join(validation_dir, 'horses') # Directory with our validation horse pictures
validation_humans_dir = os.path.join(validation_dir, 'humans')# Directory with our validation humanas pictures
train_horses_fnames = os.listdir(train_horses_dir)
train_humans_fnames = os.listdir(train_humans_dir)
validation_horses_fnames = os.listdir(validation_horses_dir)
validation_humans_fnames = os.listdir(validation_humans_dir)
print(len(train_horses_fnames))
print(len(train_humans_fnames))
print(len(validation_horses_fnames))
print(len(validation_humans_fnames))
- 构建batch数据生成器
# Define our example directories and files
train_dir = '/tmp/training'
validation_dir = '/tmp/validation'
# Add our data-augmentation parameters to ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255.,
rotation_range = 40,
width_shift_range = 0.2,
height_shift_range = 0.2,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
# Note that the validation data should not be augmented!
test_datagen = ImageDataGenerator( rescale = 1.0/255. )
# Flow training images in batches of 20 using train_datagen generator
train_generator = train_datagen.flow_from_directory(train_dir,
batch_size = 20,
class_mode = 'binary',
target_size = (150, 150))
# Flow validation images in batches of 20 using test_datagen generator
validation_generator = test_datagen.flow_from_directory( validation_dir,
batch_size = 20,
class_mode = 'binary',
target_size = (150, 150))
- 训练模型
callbacks = myCallback()
history = model.fit_generator(
train_generator,
validation_data = validation_generator,
steps_per_epoch = 100,
epochs = 100,
validation_steps = 50,
verbose = 2,
callbacks=[callbacks])
- 查看训练曲线(训练集和验证集的准确率)
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'r', label='Training accuracy')
plt.plot(epochs, val_acc, 'b', label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.legend(loc=0)
plt.figure()
plt.show()
【参考文献】
1.google colab