轨迹驻留点检测
1. 定义
驻留点:驻留点(Stay Point)是车辆在行驶过程中的停留信息,是由一系列连续的GPS点组成(特殊的轨迹段),GPS在空间上非常接近,但是时间跨度很大。通俗地讲,如果一个车辆在一个小的空间范围内持续出现了很长时间,则认为车辆在该范围内驻留了。
驻留点检测:从一条轨迹中检测出所有的驻留点所在的位置称为驻留点检测。
图1表示了一条轨迹中的驻留点信息,从开始,后续的点、、与的空间距离都比较小,且到的时间跨度很大时,{}便被认为是一个驻留点。驻留点包含了丰富的时空语义信息,例如:驻留点比较多的地方可能是一个商场(图1B))、公园(图1C))等。
2. 算法描述
从定义中可以得到驻留点的两个特征:空间范围小,时间跨度大。驻留点检测算法的关键就在如何定义这个小和大。
我们称驻留点的起始GPS点称为锚点(Anchor),下面从空间和时间两个维度对驻留点检测算法进行阐述。
2.1 空间范围检测:
在空间上,从锚点开始,找到锚点之后连续的n个与锚点距离小于最大驻留距离(Maximum Stay Distance)的GPS点。用公式表示为:,其中 ,并且
满足。
如图2所示,当取5,并以作为锚点anchor进行驻留点检测时,,,都小于5,而大于5。则本次空间范围检测中找到了3个与锚点距离小于的GPS点{}。
2.2 时间跨度检测:
对于锚点anchor和其后检测到的n个连续的距离小于的GPS点,如果,则认为车辆驻留的时间足够大,可以将anchor及其后面的连续n个GPS点识别成一个驻留点(共n+1个GPS),其中是用户设置的最小驻留时间(Minimum Stay Time)。
在图2中,如果,则{}构成了一个驻留点,否则,不认为这是一个驻留点。因为虽然这4个GPS点的空间距离很小,但是时间跨度也很小,有可能是车辆在缓慢移动(比如在等待红绿灯)。
3. 算法分类
上文中描述了给定一个锚点anchor,根据空间范围和时间跨度检测驻留点的方法。如果检测到一个驻留点,那么下一个锚点anchor应该怎么选呢,这就引出了两种驻留点检测算法的划分。
3.1 基础的驻留点检测[文献1]
如果当前锚点anchor及其后面的n个GPS点组成一个驻留点,则下一次检查的锚点取;否则下一次检测的锚点为,即当前锚点的下一个GPS点。
这种检测方法得到的驻留点可能存在驻留点相邻的情况,比如检测到 = {}和 = {}这两个相邻的驻留点。
3.2 基于密度合并的驻留点检测[文献2]
无论当前锚点anchor是否检测到驻留点,下一次检测锚点都取anchor的下一个GPS点。
这种检测方法首先检测出所有的驻留点,比如 = {}, = {}和 = {}这3个驻留点;然后将相互重叠的驻留点合并成一个最终的驻留点,比如将进行合并,最终得到驻留点={}和。
4. 代码实现
完整的Scala代码请查看我的GitHub。
4.1 驻留点检测父类
代码实现的主要逻辑是利用calStayPointBounds
抽象方法计算出驻留点在轨迹GPS点序列中的位置,然后在detect
方法中将这些GPS点摘取出来,组成驻留点(StayPoint)。
abstract class AbstractStayPointDetector {
def detect(trajectory: Trajectory): Array[StayPoint] = {
val gpsCoordinates = trajectory.getCoordinatesGPS
val stayPointBounds = calStayPointBounds(gpsCoordinates)
for ((startIndex, endIndex) <- stayPointBounds) yield {
val stayPointCoordinates = gpsCoordinates.slice(startIndex, endIndex + 1)
new StayPoint(stayPointCoordinates.toList.asJava, trajectory.oid)
}
}
/**
* Find all the stay points' bound in trajectory's coordinates
*
* @param gpsCoordinates trajectory's gps coordinates containing longitude latitude and time
* @return bound of each stay point, consisting of start index and end index(include)
*/
def calStayPointBounds(gpsCoordinates: Array[CoordinateGPS]): Array[(Int, Int)]
/**
* Calculate the position of gps coordinate whose distance
* to anchor firstly exceeds the max stay point distance threshold
*
* @param gpsCoordinates gps coordinates of trajectory
* @param anchorIndex anchor position in gpsCoordinates
* @param maxDistInM max stay point distance in unit meter
* @return the position of first coordinate whose distance from anchor is further than maxDistInM
*/
protected def getFirstExceedIndex(gpsCoordinates: Array[CoordinateGPS],
anchorIndex: Int, maxDistInM: Double): Int = {
val anchor = gpsCoordinates(anchorIndex)
var currIndex = anchorIndex + 1
while (currIndex < gpsCoordinates.length) {
val distInM = DistanceCalculator.distInMeter(anchor, gpsCoordinates(currIndex))
if (distInM > maxDistInM) {
return currIndex
}
currIndex += 1
}
currIndex
}
/**
* Judge whether start to end time interval of stay point exceeds the specific threshold
*
* @param startTime time of stay point's start coordinate
* @param endTime time of stay point's end coordinate
* @param minStayTimeInSec minimum stay point time interval in unit second
* @return whether time interval from start to end coordinate exceeds the threshold
*/
protected def isExceedMinTimeThreshold(startTime: Timestamp, endTime: Timestamp,
minStayTimeInSec: Double): Boolean = {
val timeIntervalInSec = endTime.toInstant.getEpochSecond - startTime.toInstant.getEpochSecond
timeIntervalInSec > minStayTimeInSec
}
}
4.2 基础的驻留点检测
实现父类中的calStayPointBounds
方法,检测出的驻留点可能相邻。
class ClassicStayPointDetector(maxStayDistInMeter: Double, minStayTimeInSecond: Double) extends AbstractStayPointDetector {
/**
* Find all the stay points' bound in trajectory's coordinates
*
* @param gpsCoordinates trajectory's gps coordinates containing longitude latitude and time
* @return bound of each stay point, consisting of start index and end index(include)
*/
override def calStayPointBounds(gpsCoordinates: Array[CoordinateGPS]): Array[(Int, Int)] = {
val stayPointBounds = new ArrayBuffer[(Int, Int)]()
var currIndex = 0
while (currIndex < gpsCoordinates.length) {
val endIndex = super.getFirstExceedIndex(gpsCoordinates, currIndex, maxStayDistInMeter) - 1
val anchorTime = gpsCoordinates(currIndex).time
val endTime = gpsCoordinates(endIndex).time
val isExceedTime = super.isExceedMinTimeThreshold(anchorTime, endTime, minStayTimeInSecond)
if (!isExceedTime) {
stayPointBounds += ((currIndex, endIndex))
currIndex = endIndex + 1
} else {
currIndex += 1
}
}
stayPointBounds.toArray
}
}
4.3 基于密度合并的驻留点检测
实现父类的calStayPointBounds
方法,检测出基于密度合并后的驻留点
class DensityStayPointDetector(maxStayDistInMeter: Double, minStayTimeInSecond: Double) extends AbstractStayPointDetector {
/**
* Find all the stay points' bound in trajectory's coordinates
*
* @param gpsCoordinates trajectory's gps coordinates containing longitude latitude and time
* @return bound of each stay point, consisting of start index and end index(include)
*/
override def calStayPointBounds(gpsCoordinates: Array[CoordinateGPS]): Array[(Int, Int)] = {
val stayPointBounds = new ArrayBuffer[(Int, Int)]()
var startIndex: Option[Int] = None
var endIndex: Option[Int] = None
for (currIndex <- gpsCoordinates.indices) {
val tempEndIndex = super.getFirstExceedIndex(gpsCoordinates, currIndex, maxStayDistInMeter) - 1
val anchorTime = gpsCoordinates(currIndex).time
val endTime = gpsCoordinates(tempEndIndex).time
val isExceedTime = super.isExceedMinTimeThreshold(anchorTime, endTime, minStayTimeInSecond)
if (!isExceedTime) {
//detected stay point
if (startIndex.isEmpty) {
startIndex = Some(currIndex)
}
if (endIndex.isEmpty || endIndex.get < tempEndIndex) {
endIndex = Some(tempEndIndex)
}
}
if (endIndex.isDefined && endIndex.get == currIndex) {
stayPointBounds += ((startIndex.get, endIndex.get))
startIndex = None
endIndex = None
}
}
stayPointBounds.toArray
}
}
5. 总结
驻留点检测是指检测轨迹GPS点序列中表示车辆驻留信息的GPS子序列,轨迹的驻留信息会在很多轨迹分析挖掘算法中得到广泛应用。
参考文献
[1] Zheng Y. Trajectory data mining: an overview[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2015, 6(3): 1-41.
[2] Yuan J, Zheng Y, Zhang L, et al. Where to find my next passenger[C]//Proceedings of the 13th international conference on Ubiquitous computing. 2011: 109-118.