影视处理

物体检测1:安装和验证对象检测API(TF1)

2020-02-21  本文已影响0人  古风子
tf

阅读和验证该文章前:请先搭建tensorflow环境:
tensorflow环境搭建

TensorFlow对象检测API是一个建立在TensorFlow之上的开源框架,可以轻松构建,训练和部署对象检测模型。 github地址

下载TensorFlow Model模型库

TensorFlow 模型库包含了很多开源的模型,包括图像分类、检测、自然语言处理NLP、视频预测、图像理解等等,我们要学习的对象检测API也包括在这里面;

首先,在Home目录创建tensorflow, 将代码clone到本地

git clone https://github.com/tensorflow/models.git

使用以上命令,直接拉去的是tensorflow的master分支,也就是最新的分支代码

注意:你要使用与你的tensorflow版本对应的版本,例如你的tensorflow是1,那么你应该modle-r1.xx版本;如果你是使用的是tensorflow2,你应该使用modle-2.xx版本;所以,你应该根据你的tensorflow的版本,选择合适的物体检测API分支

(base) jiadongfeng:~/tensorflow/models/research$ git branch -a
* master
 
 ...
  remotes/origin/guptapriya-patch-6
 ...

 ...
  remotes/origin/r1.10.0
  remotes/origin/r1.11
  remotes/origin/r1.12.0
  remotes/origin/r1.13.0
  remotes/origin/r1.4.0
  remotes/origin/r1.5
  remotes/origin/r1.6.0
  remotes/origin/r1.7.0
  remotes/origin/r1.8.0
  remotes/origin/r1.8.1
  remotes/origin/r1.9.0
  remotes/origin/r2.1.0
  remotes/origin/r2.1_model_reference
  ...

因为我们使用的tesorflow版本是1.14.0,因此model branch我们使用remotes/origin/r1.13.0

//你的tensorflow必须是v1.9以上版本,以下是物体检测api中做的限制
if StrictVersion(tf.__version__) < StrictVersion('1.9.0'):
  raise ImportError('Please upgrade your TensorFlow installation to v1.9.* or later!')

Protobuf 编译

Tensorflow Object Detection API 用 Protobufs 来配置模型和训练参数. 在用这个框架之前,必须先编译Protobuf 库,切换到这个目录下: tensorflow/models/research/

cd ~/tensorflow/models/research/

执行:

protoc object_detection/protos/*.proto --python_out=.

添加环境变量 PYTHONPATH

# From tensorflow/models/research/
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

注意: 这条命令在新打开的终端中需要重新执行一次才会在新终端中生效;

如果不想那么麻烦,就用下面的命令编辑 ~/.bashrc 文件,把上面的语句添加到末尾.

gedit ~/.bashrc 
/home/jiadongfeng/tensorflow/models/research
/home/jiadongfeng/tensorflow/models/research/slim

测试model

执行,得到OK则说明安装成功:

(base) jiadongfeng:~/tensorflow/models/research$ export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
(base) jiadongfeng:~/tensorflow/models/research$ python object_detection/builders/model_builder_test.py
WARNING:tensorflow:
The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
  * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
  * https://github.com/tensorflow/addons
  * https://github.com/tensorflow/io (for I/O related ops)
If you depend on functionality not listed there, please file an issue.

Running tests under Python 2.7.16: /home/jiadongfeng/anaconda2/bin/python
[ RUN      ] ModelBuilderTest.test_create_experimental_model
[       OK ] ModelBuilderTest.test_create_experimental_model
[ RUN      ] ModelBuilderTest.test_create_faster_rcnn_model_from_config_with_example_miner
[       OK ] ModelBuilderTest.test_create_faster_rcnn_model_from_config_with_example_miner
[ RUN      ] ModelBuilderTest.test_create_faster_rcnn_models_from_config_faster_rcnn_with_matmul
[       OK ] ModelBuilderTest.test_create_faster_rcnn_models_from_config_faster_rcnn_with_matmul
[ RUN      ] ModelBuilderTest.test_create_faster_rcnn_models_from_config_faster_rcnn_without_matmul
[       OK ] ModelBuilderTest.test_create_faster_rcnn_models_from_config_faster_rcnn_without_matmul
[ RUN      ] ModelBuilderTest.test_create_faster_rcnn_models_from_config_mask_rcnn_with_matmul
[       OK ] ModelBuilderTest.test_create_faster_rcnn_models_from_config_mask_rcnn_with_matmul
[ RUN      ] ModelBuilderTest.test_create_faster_rcnn_models_from_config_mask_rcnn_without_matmul
[       OK ] ModelBuilderTest.test_create_faster_rcnn_models_from_config_mask_rcnn_without_matmul
[ RUN      ] ModelBuilderTest.test_create_rfcn_model_from_config
[       OK ] ModelBuilderTest.test_create_rfcn_model_from_config
[ RUN      ] ModelBuilderTest.test_create_ssd_fpn_model_from_config
[       OK ] ModelBuilderTest.test_create_ssd_fpn_model_from_config
[ RUN      ] ModelBuilderTest.test_create_ssd_models_from_config
[       OK ] ModelBuilderTest.test_create_ssd_models_from_config
[ RUN      ] ModelBuilderTest.test_invalid_faster_rcnn_batchnorm_update
[       OK ] ModelBuilderTest.test_invalid_faster_rcnn_batchnorm_update
[ RUN      ] ModelBuilderTest.test_invalid_first_stage_nms_iou_threshold
[       OK ] ModelBuilderTest.test_invalid_first_stage_nms_iou_threshold
[ RUN      ] ModelBuilderTest.test_invalid_model_config_proto
[       OK ] ModelBuilderTest.test_invalid_model_config_proto
[ RUN      ] ModelBuilderTest.test_invalid_second_stage_batch_size
[       OK ] ModelBuilderTest.test_invalid_second_stage_batch_size
[ RUN      ] ModelBuilderTest.test_session
[  SKIPPED ] ModelBuilderTest.test_session
[ RUN      ] ModelBuilderTest.test_unknown_faster_rcnn_feature_extractor
[       OK ] ModelBuilderTest.test_unknown_faster_rcnn_feature_extractor
[ RUN      ] ModelBuilderTest.test_unknown_meta_architecture
[       OK ] ModelBuilderTest.test_unknown_meta_architecture
[ RUN      ] ModelBuilderTest.test_unknown_ssd_feature_extractor
[       OK ] ModelBuilderTest.test_unknown_ssd_feature_extractor
----------------------------------------------------------------------
Ran 17 tests in 0.383s

OK (skipped=1)

运行demo

进入/tensorflow/models/research/object_detection目录,运行:

jupyter notebook

一定要在object_detection目录,因为代码的数据读取和保存都是在这个目录的。model中的测试代码是从当前目录读取数据的。当然,你也可以修改代码,重新指定目录读取数据

在jupyter中打开以下文件

~/tensorflow/models/research/object_detection/object_detection_tutorial.ipynb

在window系统中,可以直接打开以下网址查看:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

按照步骤,获取测试demo代码
以上官方提供的demo,如果你完全按照代码拷贝,是运行不了的。需要稍微修改,以下为本地处理了各种报错的代码(代码较多,放到了单独的页面)

tensorflow物体检测API完整demo

运行结果

image1_ret.png image2_ret.png

报错处理

  1. TypeError: load() takes at least 3 arguments (1 given)
error locaton:
tf.saved_model.load(str(model_dir))
TypeError: load() takes at least 3 arguments (1

这个是tensorflow 版本和物体检测版本不对应引起的。

如果你使用tensorflow1,使用model的r1版本,使用git checkout直接拉取即可


(base) jiadongfeng:~/tensorflow/models/research$ git branch -a
* master

  emotes/origin/r1.10.0
  remotes/origin/r1.11
  remotes/origin/r1.12.0
  remotes/origin/r1.13.0
  remotes/origin/r1.4.0
  remotes/origin/r1.5
  remotes/origin/r1.6.0
  remotes/origin/r1.7.0
  remotes/origin/r1.8.0
  remotes/origin/r1.8.1
  remotes/origin/r1.9.0
  remotes/origin/r2.1.0
  remotes/origin/r2.1_model_reference

(base) jiadongfeng:~/tensorflow/models/research$ git checkout   remotes/origin/r1.13.0


不要使用model的最新版本或者2.0版本,因为model的2.0版本有使用tensorflow1的接口,无论如果都编译不过

当我们将tensorflow更新到v2时,提示tf.contrib 被 deprecated 。也就是说在最新的支持tensorflow2的物体检测api中,又使用了tensorflow1的接口。

/home/jiadongfeng/anaconda2/lib/python2.7/site-packages/ipykernel_launcher.py:10: UserWarning:
This call to matplotlib.use() has no effect because the backend has already
been chosen; matplotlib.use() must be called before pylab, matplotlib.pyplot,
or matplotlib.backends is imported for the first time.

解决方案:在头部新增import matplotlib和matplotlib.use('Agg')

#####import
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

#顺序不能反
import matplotlib
matplotlib.use('Agg')
  1. 运行物体检测Demo,无运行报错,但是不显示图片
    参考:
    https://blog.csdn.net/weixin_43345331/article/details/87924551
  vis_util.visualize_boxes_and_labels_on_image_array(
      image_np,
      output_dict['detection_boxes'],
      output_dict['detection_classes'],
      output_dict['detection_scores'],
      category_index,
      instance_masks=output_dict.get('detection_masks'),
      use_normalized_coordinates=True,
      line_thickness=8)
  plt.figure(figsize=IMAGE_SIZE)
  plt.imshow(image_np)

plt.imshow不显示图片,参照晚上调用plt.show()也不行,也没有报错,只能通过以下方式将处理结果保存下来查看

 plt.figure(figsize=IMAGE_SIZE)
  plt.imshow(image_np)
  pylab.show()
  //在当前目录保存处理后的图片
  plt.savefig(image_path.split('.')[0]+'_ret')
上一篇下一篇

猜你喜欢

热点阅读