4.28

2017-04-29  本文已影响0人  Dong_Chen

1: Faster-rcnn代码
2:把实验数据跑完

http://blog.konghy.cn/2017/04/24/python-entry-program/

1.运行read_data.py 分别修改param为oxford和paris

create the lists of query and database images


data_reader.png
data/imagelsits

Filtering Stag. The Image-wise pooling (IPA) strategy is used to build image descriptors for both query and database images. At test time, the descriptor of the query image is compared to all the elements in the database, which are then ranked based on the cosine similarity. At this stage, the whole image is considered as the query.

2.运行features.py

extract Fast R-CNN features for all images in a dataset and store them to disk

先提取paris的参数,fast-rcnn里面的输入图片的参数设置为500.


config.py输入图片大小

结束时候的截图:


features.py features.py

一开始的截图:

Paste_Image.png
Paste_Image.png Paste_Image.png Paste_Image.png Paste_Image.png Paste_Image.png Paste_Image.png

开始提取Oxford的特征:

Paste_Image.png

生成的特征保存在data/features里面:


Paste_Image.png

3.运行ranker.py

generate and store the rankings for the queries of the chosen dataset

先排Oxford的:


Oxford_ranker

排Paris的:


Paris_ranker
结果保存在data/ranking里面:
ranking Oxford_ranker paris_ranker

Spatial Reranking. After the Filtering Stage, the top N elements are locally analyzed and reranked.
再次排列:

4.运行rerank.py文件

Rerank based on region features
先rerank Oxford数据集


image.png

再rerank Paris数据集


image.png

生成文件存在data/reranking里面


image.png

Query Expasion (QE). The image descriptors of the top
M elements of the ranking are averaged together with the
query descriptor to perform a new search。
ranking 里面的top5平均后进行一个新的search

5.运行eval.py文件

Oxford_eval Oxford_eval Paris_eval Paris_eval
上一篇 下一篇

猜你喜欢

热点阅读