怎样解题(高中数学)

“导数定义应用”练习题

2019-03-17  本文已影响78人  7300T

已知f^{\prime}\left(x_{0}\right)=a求下列极限:
1.\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}-\Delta x\right)}{\Delta x}

  1. \lim _{h \rightarrow 0} \frac{f\left(x_{0}+h^{2}\right)-f\left(x_{0}\right)}{h}

解:

\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}-\Delta x\right)}{\Delta x}

=\lim _{\Delta x \rightarrow 0} \frac{\left[f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)\right]+\left[f\left(x_{0}\right)-f\left(x_{0}-\Delta x\right)\right]}{\Delta x}

=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}+\lim _{-\Delta r \rightarrow 0} \frac{f\left(x_{0}-\Delta x\right)-f\left(x_{0}\right)}{-\Delta x}

=2 f^{\prime}\left(x_{0}\right)
=2 a

\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h^{2}\right)-f\left(x_{0}\right)}{h}

=\lim _{h \rightarrow 0}\left[\frac{f\left(x_{0}+h^{2}\right)-f\left(x_{0}\right)}{h^{2}} \cdot h\right]

=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h^{2}\right)-f\left(x_{0}\right)}{h^{2}} \cdot \lim _{h \rightarrow 0} h

=a \cdot 0

=0

上一篇下一篇

猜你喜欢

热点阅读