习题十一

2019-11-04  本文已影响0人  洛玖言

习题十一

2

计算 \left(\dfrac{17}{23}\right),\,\left(\dfrac{19}{37}\right),\,\left(\dfrac{60}{79}\right),\,\left(\dfrac{92}{101}\right).

Sol:

\left(\dfrac{17}{23}\right)=\left(\dfrac{-6}{23}\right)=\left(\dfrac{-1}{23}\right)\left(\dfrac{2}{23}\right)\dfrac{3}{23}=-\left(\dfrac{3}{23}\right)
又由二次互反律 \left(\dfrac{23}{3}\right)\left(\dfrac{3}{23}\right)=-1\left(\dfrac{23}{3}\right)=\left(\dfrac{2}{3}\right)=-1
\therefore\left(\dfrac{3}{23}\right)=1
\therefore\left(\dfrac{17}{23}\right)=-1

\left(\dfrac{19}{37}\right)=\left(\dfrac{-18}{37}\right)=\left(\dfrac{-1}{37}\right)\left(\dfrac{2}{37}\right)\left(\dfrac{3}{37}\right)\left(\dfrac{3}{37}\right)=-\left(\dfrac{3}{37}\right)^2
又由二次互反律 \left(\dfrac{3}{37}\right)\left(\dfrac{37}{3}\right)=1\left(\dfrac{37}{3}\right)=\left(\dfrac{1}{3}\right)=1
\therefore \left(\dfrac{3}{37}\right)=1
\therefore \left(\dfrac{19}{37}\right)=-1

\left(\dfrac{60}{79}\right)=\left(\dfrac{-19}{79}\right)=\left(\dfrac{-1}{79}\right)\left(\dfrac{19}{79}\right)=-\left(\dfrac{19}{79}\right)
由二次互反律 \left(\dfrac{19}{79}\right)\left(\dfrac{79}{19}\right)=-1\left(\dfrac{79}{19}\right)=\left(\dfrac{3}{19}\right)
由二次互反律 \left(\dfrac{3}{19}\right)\left(\dfrac{19}{3}\right)=-1\left(\dfrac{19}{3}\right)=\left(\dfrac{2}{3}\right)=-1
\therefore\left(\dfrac{3}{19}\right)=1
\therefore\left(\dfrac{19}{79}\right)=-1
\therefore\left(\dfrac{60}{19}\right)=1

\left(\dfrac{92}{101}\right)=\left(\dfrac{-9}{101}\right)=\left(\dfrac{-1}{101}\right)\left(\dfrac{3}{101}\right)^2=\left(\dfrac{3}{101}\right)^2
由二次互反律 \left(\dfrac{3}{101}\right)\left(\dfrac{101}{3}\right)=1\left(\dfrac{101}{3}\right)=\left(\dfrac{-1}{3}\right)=-1
\therefore\left(\dfrac{3}{101}\right)=-1
\therefore\left(\dfrac{92}{101}\right)=1


3

(i) 确定以 -3 为二次剩余的素数.
(ii) 确定以 5 为二次剩余的素数.
(iii) 确定以 15 为二次剩余的素数.

Sol:
(i)
由题意得
\left(\dfrac{-3}{p}\right)=\left(\dfrac{-1}{p}\right)\left(\dfrac{3}{p}\right)=1
\therefore\left(\dfrac{-1}{p}\right)=\left(\dfrac{3}{p}\right)=1\left(\dfrac{-1}{p}\right)=\left(\dfrac{3}{p}\right)=-1
\therefore p\equiv1\pmod{4}p\equiv\pm1\pmod{12}
p\equiv3\pmod{4}p\equiv\pm5\pmod{12}
\therefore p\equiv1\pmod{12}p\equiv7\pmod{12}

(ii)
由题意得
\left(\dfrac{5}{p}\right)=1
又由二次互反律 \left(\dfrac{5}{p}\right)\bigg(\dfrac{p}{5}\bigg)=1
\therefore p^2\equiv1\pmod{5}\Rightarrow p\equiv\pm1\pmod{5}

(iii)
\left(\dfrac{15}{p}\right)=\left(\dfrac{3}{p}\right)\left(\dfrac{5}{p}\right)=1
\left(\dfrac{3}{p}\right)=\left(\dfrac{5}{p}\right)=1
\left(\dfrac{3}{p}\right)=\left(\dfrac{5}{p}\right)=-1
\therefore p\equiv\pm1\pmod{12}p\equiv\pm1\pmod{5}\Rightarrow p\equiv\pm1,\pm11\pmod{60}
p\equiv\pm5\pmod{12}p\equiv\pm3\pmod{5}\Rightarrow p\equiv\pm7,\pm17\pmod{60}


5

p=4k+1 是素数,ak 的约数. 证明: \left(\dfrac{a}{p}\right)=1

Sol:
a 为素数,
\because p\equiv1\pmod{4}
\therefore\left(\dfrac{a}{p}\right)\left(\dfrac{p}{a}\right)=1
\because \;ak 的约数,p=4k+1
\therefore\bigg(\dfrac{p}{a}\bigg)=\left(\dfrac{1}{a}\right)=1
\therefore\left(\dfrac{a}{p}\right)=1
a 不为素数时,可分解为素因子乘积
a=q_1q_2\cdots q_n
\therefore\left(\dfrac{a}{p}\right)=\left(\dfrac{q_1}{p}\right)\left(\dfrac{q_2}{p}\right)\cdots\left(\dfrac{q_n}{p}\right)=1\cdot1\cdots1=1
Q.E.D.


6

p=10n-1 是素数,证明: p|5^{5n-1}-1

Sol:
\because p\equiv-1\pmod{5}
\therefore\left(\dfrac{5}{p}\right)=1
\therefore\left(\dfrac{5}{p}\right)\equiv5^{\frac{p-1}{2}}\equiv5^{5n-1}\equiv1\pmod{p}
\therefore p|5^{5n-1}-1


7

n>1,\,p=2^n+1 是素数. 证明: 模 p 的原根之集与模 p 的而二次非剩余之集相同;进而证明 3,7 都是模 p 的原根.

Sol:
不会,如果有同学有证明,欢迎分享orz

整数与多项式-【目录】

上一篇下一篇

猜你喜欢

热点阅读