腾讯优图常见算法题(二)

2021-05-11  本文已影响0人  加油11dd23

十九、手撕快排

class Solution {
    int partition(vector<int>& nums, int l, int r) {
        int pivot = nums[r];
        int i = l - 1;
        for (int j = l; j <= r - 1; ++j) {
            if (nums[j] <= pivot) {
                i = i + 1;
                swap(nums[i], nums[j]);
            }
        }
        swap(nums[i + 1], nums[r]);
        return i + 1;
    }
    int randomized_partition(vector<int>& nums, int l, int r) {
        int i = rand() % (r - l + 1) + l; // 随机选一个作为我们的主元
        swap(nums[r], nums[i]);
        return partition(nums, l, r);
    }
    void randomized_quicksort(vector<int>& nums, int l, int r) {
        if (l < r) {
            int pos = randomized_partition(nums, l, r);
            randomized_quicksort(nums, l, pos - 1);
            randomized_quicksort(nums, pos + 1, r);
        }
    }
public:
    vector<int> sortArray(vector<int>& nums) {
        srand((unsigned)time(NULL));
        randomized_quicksort(nums, 0, (int)nums.size() - 1);
        return nums;
    }
};

二十、从前序和中序中构建二叉树

class Solution {
private:
    unordered_map<int, int> index;

public:
    TreeNode* myBuildTree(const vector<int>& preorder, const vector<int>& inorder, int preorder_left, int preorder_right, int inorder_left, int inorder_right) {
        if (preorder_left > preorder_right) {
            return nullptr;
        }
        
        // 前序遍历中的第一个节点就是根节点
        int preorder_root = preorder_left;
        // 在中序遍历中定位根节点
        int inorder_root = index[preorder[preorder_root]];
        
        // 先把根节点建立出来
        TreeNode* root = new TreeNode(preorder[preorder_root]);
        // 得到左子树中的节点数目
        int size_left_subtree = inorder_root - inorder_left;
        // 递归地构造左子树,并连接到根节点
        // 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
        root->left = myBuildTree(preorder, inorder, preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1);
        // 递归地构造右子树,并连接到根节点
        // 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
        root->right = myBuildTree(preorder, inorder, preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right);
        return root;
    }

    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        int n = preorder.size();
        // 构造哈希映射,帮助我们快速定位根节点
        for (int i = 0; i < n; ++i) {
            index[inorder[i]] = i;
        }
        return myBuildTree(preorder, inorder, 0, n - 1, 0, n - 1);
    }
};

二十一、数组中重复的数据

二十二、买卖股票的最佳时机

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int inf = 1e9;
        int minprice = inf, maxprofit = 0;
        for (int price: prices) {
            maxprofit = max(maxprofit, price - minprice);
            minprice = min(price, minprice);
        }
        return maxprofit;
    }
};

二十三、爬楼梯

image.png
class Solution {
public:
    int climbStairs(int n) {
        int p = 0, q = 0, r = 1;
        for (int i = 1; i <= n; ++i) {
            p = q; 
            q = r; 
            r = p + q;
        }
        return r;
    }
};

二十四、最长回文子串

image.png
#include <iostream>
#include <string>
#include <vector>

using namespace std;

class Solution {
public:
    string longestPalindrome(string s) {
        int n = s.size();
        if (n < 2) {
            return s;
        }

        int maxLen = 1;
        int begin = 0;
        // dp[i][j] 表示 s[i..j] 是否是回文串
        vector<vector<int>> dp(n, vector<int>(n));
        // 初始化:所有长度为 1 的子串都是回文串
        for (int i = 0; i < n; i++) {
            dp[i][i] = true;
        }
        // 递推开始
        // 先枚举子串长度
        for (int L = 2; L <= n; L++) {
            // 枚举左边界,左边界的上限设置可以宽松一些
            for (int i = 0; i < n; i++) {
                // 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得
                int j = L + i - 1;
                // 如果右边界越界,就可以退出当前循环
                if (j >= n) {
                    break;
                }

                if (s[i] != s[j]) {
                    dp[i][j] = false;
                } else {
                    if (j - i < 3) {
                        dp[i][j] = true;
                    } else {
                        dp[i][j] = dp[i + 1][j - 1];
                    }
                }

                // 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置
                if (dp[i][j] && j - i + 1 > maxLen) {
                    maxLen = j - i + 1;
                    begin = i;
                }
            }
        }
        return s.substr(begin, maxLen);
    }
};

二十五、三数之和

image.png
image.png
image.png
#include <iostream>
#include <string>
#include <vector>

using namespace std;

class Solution {
public:
   string longestPalindrome(string s) {
       int n = s.size();
       if (n < 2) {
           return s;
       }

       int maxLen = 1;
       int begin = 0;
       // dp[i][j] 表示 s[i..j] 是否是回文串
       vector<vector<int>> dp(n, vector<int>(n));
       // 初始化:所有长度为 1 的子串都是回文串
       for (int i = 0; i < n; i++) {
           dp[i][i] = true;
       }
       // 递推开始
       // 先枚举子串长度
       for (int L = 2; L <= n; L++) {
           // 枚举左边界,左边界的上限设置可以宽松一些
           for (int i = 0; i < n; i++) {
               // 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得
               int j = L + i - 1;
               // 如果右边界越界,就可以退出当前循环
               if (j >= n) {
                   break;
               }

               if (s[i] != s[j]) {
                   dp[i][j] = false;
               } else {
                   if (j - i < 3) {
                       dp[i][j] = true;
                   } else {
                       dp[i][j] = dp[i + 1][j - 1];
                   }
               }

               // 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置
               if (dp[i][j] && j - i + 1 > maxLen) {
                   maxLen = j - i + 1;
                   begin = i;
               }
           }
       }
       return s.substr(begin, maxLen);
   }
};

二十六、合并两个有序数组

class Solution {
public:
    void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
        int p1 = 0, p2 = 0;
        int sorted[m + n];
        int cur;
        while (p1 < m || p2 < n) {
            if (p1 == m) {
                cur = nums2[p2++];
            } else if (p2 == n) {
                cur = nums1[p1++];
            } else if (nums1[p1] < nums2[p2]) {
                cur = nums1[p1++];
            } else {
                cur = nums2[p2++];
            }
            sorted[p1 + p2 - 1] = cur;
        }
        for (int i = 0; i != m + n; ++i) {
            nums1[i] = sorted[i];
        }
    }
};

class Solution {
public:
    void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
        for (int i = 0; i != n; ++i) {
            nums1[m + i] = nums2[i];
        }
        sort(nums1.begin(), nums1.end());
    }
};
上一篇 下一篇

猜你喜欢

热点阅读