数据结构信息学竞赛题解(IO题解)数据结构和算法分析

BZOJ-3641: 货车运输(树链剖分+持久化线段树)

2019-03-13  本文已影响0人  AmadeusChan

题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3641

首先如果在链上跑的话,可以随便分类讨论之后用持久化线段树搞掉,然后这是一个环套树,那么就树上的情况数链剖分+持久化线段树跑一跑,环上持久化线段树跑一跑,最后注意一下最小的那个点是一个二元环(比赛的时候被这个坑了就没A掉QAQ)。

代码:

#include <cstdio>

#include <algorithm>

#include <cstring>

#include <vector>

 

using namespace std ;

 

#define travel( x ) for ( edge *p = head[ x ] ; p ; p = p -> next )

#define rep( i , x ) for ( int i = 0 ; i ++ < x ; )

#define REP( i , l , r ) for ( int i = l ; i <= r ; ++ i )

#define Rep( i , x ) for ( int i = 0 ; i < x ; ++ i )

#define DOWN( i , r , l ) for ( int i = r ; i >= l ; -- i )

 

typedef long double ld ;

 

const int maxn = 101000 ;

const int maxm = maxn << 1 ;

const int maxu = 500000 ;

 

struct edge {

    int t , x ;

    ld l ;

    edge *next ;

} E[ maxm ] ;

 

edge *pe = E , *head[ maxn ] ;

 

inline void Init_edge(  ) {

    memset( head , 0 , sizeof( head ) ) ;

}

 

inline void add( int s , int t , ld l , int x ) {

    pe -> t = t , pe -> l = l , pe -> x = x , pe -> next = head[ s ] ;

    head[ s ] = pe ++ ;

}

 

inline void addedge( int s , int t , ld l , int x ) {

    add( s , t , l , x ) , add( t , s , l , x ) ;

}

 

ld V[ maxn ] , W[ maxn ] ;

int n , m , q ;

 

bool del[ maxn ] , used[ maxn ] ;

int ve[ maxn ] , vn = 0 , sta[ maxn ] , tp = 0 , pos[ maxn ] ;

edge *edg[ maxn ] , *nxt[ maxn ] , *lst[ maxn ] ;

 

void dfs( int now , int fa ) {

    if ( vn ) return ;

    used[ now ] = true , sta[ pos[ now ] = ++ tp ] = now ;

    travel( now ) if ( p -> t != fa ) {

        if ( vn ) return ;

        if ( used[ p -> t ] ) {

            REP( i , pos[ p -> t ] , tp ) {

                ve[ vn ] = sta[ i ] , lst[ vn ] = edg[ sta[ i ] ] , del[ sta[ i ] ] = true ;

                vn ++ ;

            }

            lst[ 0 ] = p ;

            return ;

        } else {

            edg[ p -> t ] = p ;

            dfs( p -> t , now ) ;

        }

    }

    used[ now ] = false , -- tp ;

}

 

struct node {

    node *lc , *rc ;

    ld x , y ;

    node(  ) {

        x = y = 0 , lc = rc = NULL ;

    }

} sgt[ maxn * 20 ] ;

 

typedef node* np ;

 

np pt = sgt , null = sgt ;

 

inline void Init_sgt(  ) {

    ++ pt ;

    null -> lc = null -> rc = null , null -> x = null -> y = 0 ;

}

 

void add( int p , int l , int r , ld x , ld y , np &t , np u ) {

    if ( t == null ) t = pt ++ ;

    t -> x = u -> x + x , t -> y = u -> y + y ;

    if ( l == r ) return ;

    int mid = ( l + r ) >> 1 ;

    if ( p <= mid ) {

        t -> rc = u -> rc ;

        add( p , l , mid , x , y , t -> lc = null , u -> lc ) ;

    } else {

        t -> lc = u -> lc ;

        add( p , mid + 1 , r , x , y , t -> rc = null , u -> rc ) ;

    }

}

 

void query( int l , int r , int _l , int _r , ld &x , ld &y , np t ) {

    if ( l > r ) {

        x = y = 0 ; return ;

    }

    if ( l == _l && r == _r ) {

        x = t -> x , y = t -> y ; return ;

    }

    int mid = ( _l + _r ) >> 1 ;

    if ( r <= mid ) query( l , r , _l , mid , x , y , t -> lc ) ; else

        if ( l > mid ) query( l , r , mid + 1 , _r , x , y , t -> rc ) ; else {

            ld a , b ;

            query( l , mid , _l , mid , x , y , t -> lc ) ;

            query( mid + 1 , r , mid + 1 , _r , a , b , t -> rc ) ;

            x += a , y += b ;

        }

}

 

int h[ maxn ] , sz[ maxn ] , bel[ maxn ] , chd[ maxn ] , up[ maxn ][ 21 ] , col[ maxn ] , cc = 0 ;

edge *to[ maxn ] ;

vector < int > pth[ maxn ] ;

 

void getsz( int now , int fa ) {

    sz[ now ] = 1 , chd[ now ] = 0 , col[ now ] = cc ;

    travel( now ) if ( p -> t != fa && ! del[ p -> t ] ) {

        h[ p -> t ] = h[ now ] + 1 , to[ p -> t ] = p , up[ p -> t ][ 0 ] = now ;

        getsz( p -> t , now ) ;

        sz[ now ] += sz[ p -> t ] ;

        if ( ! chd[ now ] || sz[ p -> t ] > sz[ chd[ now ] ] ) chd[ now ] = p -> t ;

    }

}

 

np root[ maxn ] ;

int id[ maxn ] ;

 

void Link( int now , int fa , int u ) {

    id[ now ] = u , root[ now ] = null , pth[ u ].push_back( now ) ;

    if ( now != u ) {

        ld w = W[ to[ now ] -> x ] , v = V[ to[ now ] -> x ] , l = to[ now ] -> l ;

        ld x = ( w * l ) / v , y = w * l ;

        add( int( v + 0.1 ) , 1 , maxu , x , y , root[ now ] , root[ fa ] ) ;

    }

    if ( chd[ now ] ) {

        Link( chd[ now ] , now , u ) ;

        travel( now ) if ( p -> t != fa && p -> t != chd[ now ] && ! del[ p -> t ] ) {

            Link( p -> t , now , p -> t ) ;

        }

    }

}

 

inline void Init_lca(  ) {

    rep( i , 20 ) rep( j , n ) up[ j ][ i ] = up[ up[ j ][ i - 1 ] ][ i - 1 ] ;

}

 

inline int Lca( int u , int v ) {

    if ( h[ u ] < h[ v ] ) swap( u , v ) ;

    DOWN( i , 20 , 0 ) if ( h[ up[ u ][ i ] ] >= h[ v ] ) u = up[ u ][ i ] ;

    if ( v == u ) return v ;

    DOWN( i , 20 , 0 ) if ( up[ u ][ i ] != up[ v ][ i ] ) {

        u = up[ u ][ i ] , v = up[ v ][ i ] ;

    }

    return up[ u ][ 0 ] ;

}

 

inline ld query( int v , int he , int speed ) {

    ld x = 0 , y = 0 , a , b ;

    while ( h[ v ] > he ) {

        if ( h[ id[ v ] ] > he ) {

            query( 1 , speed , 1 , maxu , a , b , root[ v ] ) ; x += a ;

            query( speed + 1 , maxu , 1 , maxu , a , b , root[ v ] ) ; y += b ;

            v = id[ v ] ;

            if ( int( V[ to[ v ] -> x ] + 0.1 ) <= speed ) {

                a = ( W[ to[ v ] -> x ] * to[ v ] -> l ) / V[ to[ v ] -> x ] ;

                x += a ;

            } else {

                b = W[ to[ v ] -> x ] * to[ v ] -> l ;

                y += b ;

            }

            v = up[ v ][ 0 ] ;

        } else {

            int c = pth[ id[ v ] ][ he - h[ id[ v ] ] ] ;

            query( 1 , speed , 1 , maxu , a , b , root[ v ] ) ; x += a ;

            query( speed + 1 , maxu , 1 , maxu , a , b , root[ v ] ) ; y += b ;

            query( 1 , speed , 1 , maxu , a , b , root[ c ] ) ; x -= a ;

            query( speed + 1 , maxu , 1 , maxu , a , b , root[ c ] ) ; y -= b ;

            break ;

        }

    }

    return x + y / ld( speed ) ;

}

 

inline ld Query( int u , int v , int speed ) {

    int lca = Lca( u , v ) ;

    return query( u , h[ lca ] , speed ) + query( v , h[ lca ] , speed ) ;

}

 

np pre[ maxn ] ;

 

inline ld query_c( int l , int r , int speed ) {

    if ( l > r ) return 0 ;

    ld x = 0 , y = 0 , a , b ;

    query( 1 , speed , 1 , maxu , a , b , pre[ r ] ) ; x += a ;

    query( speed + 1 , maxu , 1 , maxu , a , b , pre[ r ] ) ; y += b ;

    query( 1 , speed , 1 , maxu , a , b , pre[ l ] ) ; x -= a ;

    query( speed + 1 , maxu , 1 , maxu , a , b , pre[ l ] ) ; y -= b ;

    return x + y / ld( speed ) ;

}

 

inline ld query_p( int p , int speed ) {

    ld x = 0 , y = 0 , a , b ;

    query( 1 , speed , 1 , maxu , a , b , pre[ p ] ) ; x += a ;

    query( speed + 1 , maxu , 1 , maxu , a , b , pre[ p ] ) ; y += b ;

    return x + y / ld( speed ) ;

}

 

inline ld cal( edge *p , int spd ) {

    return ( W[ p -> x ] * p -> l ) / min( ld( spd ) , V[ p -> x ] ) ;

}

 

int main(  ) {

    Init_edge(  ) , Init_sgt(  ) ;

    scanf( "%d%d%d" , &n , &m , &q ) ;

    int s , t , x ; ld l ;

    double A , B ;

    rep( i , n ) {

        scanf( "%d%d%lf%d" , &s , &t , &A , &x ) ;

        l = A ;

        addedge( s , t , l , x ) ;

    }

    rep( i , m ) {

        scanf( "%lf%lf" , &A , &B ) ;

        V[ i ] = A , W[ i ] = B ;

    }

    if ( n == 2 ) {

        while ( q -- ) {

            scanf( "%d%d%d" , &s , &t , &x ) ;

            if ( s == t ) {

                printf( "0.000000\n" ) ; continue ;

            }

            double ans = min( cal( head[ s ] , x ) , cal( head[ s ] -> next , x ) ) ;

            printf( "%.6f\n" , ans ) ;

        }

        return 0 ;

    }

    memset( del , false , sizeof( del ) ) , memset( used , false , sizeof( used ) ) ;

    dfs( 1 , 0 ) ;

    Rep( i , vn ) pos[ ve[ i ] ] = i ;

    memset( h , 0 , sizeof( h ) ) , memset( up , 0 , sizeof( up ) ) , memset( col , 0 , sizeof( col ) ) ;

    Rep( i , vn ) travel( ve[ i ] ) if ( ! del[ p -> t ] ) {

        to[ p -> t ] = p , bel[ p -> t ] = ve[ i ] ;

        h[ p -> t ] = 1 , root[ p -> t ] = null , ++ cc ;

        getsz( p -> t , 0 ) ;

        Link( p -> t , 0 , p -> t ) ;

    }

    ld X , Y , a , b ;

    a = V[ lst[ 0 ] -> x ] , b = W[ lst[ 0 ] -> x ] ;

    X = ( b * lst[ 0 ] -> l ) / a , Y = b * lst[ 0 ] -> l ;

    add( int( a + 0.1 ) , 1 , maxu , X , Y , pre[ 0 ] = null , null ) ;

    REP( i , 1 , ( vn - 1 ) ) {

        a = W[ lst[ i ] -> x ] , b = V[ lst[ i ] -> x ] ;

        X = ( a * lst[ i ] -> l ) / b , Y = a * lst[ i ] -> l ;

        add( int( b + 0.1 ) , 1 , maxu , X , Y , pre[ i ] = null , pre[ i - 1 ] ) ;

    }

    Init_lca(  ) ;

    ld ans ;

    while ( q -- ) {

        scanf( "%d%d%d" , &s , &t , &x ) ;

        if ( col[ s ] == col[ t ] && ! del[ s ] ) {

            ans = Query( s , t , x ) ;

        } else {

            ans = 0 ;

            if ( ! del[ s ] ) {

                ans += query( s , 1 , x ) ;

                DOWN( i , 20 , 0 ) if ( h[ up[ s ][ i ] ] > 1 ) {

                    s = up[ s ][ i ] ;

                }

                if ( h[ s ] > 1 ) s = up[ s ][ 0 ] ;

                ans += cal( to[ s ] , x ) ;

                s = bel[ s ] ;

            }

            if ( ! del[ t ] ) {

                ans += query( t , 1 , x ) ;

                DOWN( i , 20 , 0 ) if ( h[ up[ t ][ i ] ] > 1 ) {

                    t = up[ t ][ i ] ;

                }

                if ( h[ t ] > 1 ) t = up[ t ][ 0 ] ;

                ans += cal( to[ t ] , x ) ;

                t = bel[ t ] ;

            }

            s = pos[ s ] , t = pos[ t ] ;

            if ( s > t ) swap( s , t ) ;

            ans += min( query_c( s , t , x ) , query_c( t , vn - 1 , x ) + query_p( s , x ) ) ;

        }

        printf( "%.6f\n" , double( ans ) ) ;

    }

    return 0 ;

}
上一篇 下一篇

猜你喜欢

热点阅读