设计模式-结构型设计模式

2022-10-11  本文已影响0人  nich

//本文参考菜鸟教程
设计模式主要分为三大类创建型模式,结构型模式,行为型模式,本文主要讲结构型模式
结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。

1.适配器模式

定义: 适配器模式将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所造成的类的兼容性问题。

interface  MediaPlayer{
    fun play(audioType:String,fileName:String)
}

interface AdvancedMediaPlayer{
    fun playVlc(fileName: String)

    fun playMp4(fileName: String)
}

class VlcImpl:AdvancedMediaPlayer{
    override fun playVlc(fileName: String) {
        println("playVlc is $fileName")
    }

    override fun playMp4(fileName: String) {

    }
}

class Mp4Impl:AdvancedMediaPlayer{
    override fun playVlc(fileName: String) {
    }

    override fun playMp4(fileName: String) {
        println("playMp4 is $fileName")
    }
}

class MediaPlayerAdapter(audioType: String) :MediaPlayer{

    lateinit var advancedMediaPlayer: AdvancedMediaPlayer

    init {
        when(audioType){
            "Mp4"->{
                advancedMediaPlayer = Mp4Impl()
            }
            "Vlc"->{
                advancedMediaPlayer = VlcImpl()
            }
        }
    }

    override fun play(audioType: String, fileName: String) {
        when(audioType){
            "Mp4"->{
                advancedMediaPlayer.playVlc(fileName)
            }
            "Vlc"->{
                advancedMediaPlayer.playMp4(fileName)
            }
        }
    }
}

class MediaPlayerImpl:MediaPlayer{

    lateinit var mediaPlayerAdapter: MediaPlayerAdapter

    override fun play(audioType: String, fileName: String) {
        when(audioType){
            "mp3"->{
                println("自己的mp3")
            }
            "Mp4","Vlc"->{
                mediaPlayerAdapter = MediaPlayerAdapter(audioType)
                mediaPlayerAdapter.play(audioType,fileName)
            }
        }
    }
}

总结

主要是为了一个类负责加入独立的或不兼容的接口功能

2.装饰器模式

定义:动态的将新功能附加到对象上。在对象功能扩展方面,它比继承更有弹性。
1.Component(被装饰对象的基类)
定义一个对象接口,可以给这些对象动态地添加职责。
2.ConcreteComponent(具体被装饰对象)
定义一个对象,可以给这个对象添加一些职责。
3.Decorator(装饰者抽象类)
维持一个指向Component实例的引用,并定义一个与Component接口一致的接口。
4.ConcreteDecorator(具体装饰者)
具体的装饰对象,给内部持有的具体被装饰对象,增加具体的职责。

interface Shape{
    fun draw()
}

class Round:Shape{
    override fun draw() {
        println("round----draw")
    }
}

class Circle:Shape{
    override fun draw() {
        println("circle----draw")
    }
}

abstract class ColorShape(private val shape: Shape):Shape{

    override fun draw() {
        shape.draw()
    }
}

class RedColorShape(private val shape: Shape): ColorShape(shape) {

    override fun draw() {
        super.draw()
        setColor()
    }

     private fun setColor(){
        println("设置颜色")
    }

}

fun main() {
    val circleColorShape = RedColorShape(Circle())
    circleColorShape.draw()

    val roundColorShape = RedColorShape(Round())
    roundColorShape.draw()
}

3.代理模式

定义:代理模式给某一个对象提供一个代理对象,并由代理对象控制对原对象的引用。通俗的来讲代理模式就是我们生活中常见的中介。
3.1静态代理

interface House{
    fun bug()
}

class HouseImpl:House{
    override fun bug() {
       println("买房子")
    }
}

class HouseProxyImpl(private val house: House):House{
    
    override fun bug() {
        println("看房子")
        house.bug()
        decorateHouse()
    }
    
    private fun decorateHouse(){
        println("装饰房子")
    }
}

fun main() {
    val houseProxyImpl = HouseProxyImpl(HouseImpl())
    houseProxyImpl.bug()
}

3.2动态代理
1.代理对象,不需要实现接口
2.代理对象的生成,是利用JDK的API,动态的在内存中构建代理对象(需要我们指定创建代理对象/目标对象实现的接口的类型)
代理类不用再实现接口了。但是,要求被代理对象必须有接口。

class HouseTrendsProxy(private val obj: Any):InvocationHandler{
    override fun invoke(proxy: Any, method: Method?, args: Array<out Any>?): Any? {
        println("买房前准备")
        val result = method?.invoke(obj,args)
        println("买房后装修")
        return result
    }
}
fun main() {
    val house:House = HouseImpl()
    val proxyHouseImpl:House = Proxy.newProxyInstance(House::class.java.classLoader, arrayOf(House::class.java),HouseTrendsProxy(house)) as House
    proxyHouseImpl.bug()
}

4.外观模式

定义: 隐藏了系统的复杂性,并向客户端提供了一个可以访问系统的接口。

class CPU{
    fun start(){
        println("cpu start")
    }

    fun shutDown(){
        println("cpu shut down")
    }
}

class Disk{
    fun start(){
        println("disk start")
    }

    fun shutDown(){
        println("disk shut down")
    }
}

class Memory(){
    fun start(){
        println("memory start")
    }

    fun shutDown(){
        println("disk shut down")
    }
}

class Compuate(private val disk: Disk,private val memory: Memory,private val cpu: CPU){

    fun start(){
        disk.start()
        memory.start()
        cpu.start()
    }

    fun shutDown(){
        disk.shutDown()
        memory.shutDown()
        cpu.shutDown()
    }
}

优点 - 松散耦合,用户只需要关注门面类compuate不需要再关注子类,子类也容易扩展

5.桥接模式

定义: 将抽象部分与它的实现部分分离,使它们都可以独立地变化。

interface DrawAPI {
    fun drawCircle(radius: Int, x: Int, y: Int)
}

class RedCircle() : DrawAPI {
    override fun drawCircle(radius: Int, x: Int, y: Int) {
        println(
            "Drawing Circle[ color: red, radius: "
                    + radius + ", x: " + x + ", " + y + "]"
        )
    }
}

class GreenCircle() : DrawAPI {
    override fun drawCircle(radius: Int, x: Int, y: Int) {
        println(
            "Drawing Circle[ color: green, radius: "
                    + radius + ", x: " + x + ", " + y + "]"
        )
    }
}

abstract class BridgeShape protected constructor(protected var drawAPI: DrawAPI) {
    abstract fun draw()
}

class BridgeCircle(private val x: Int, private val y: Int, private val radius: Int,drawAPI: DrawAPI) :
    BridgeShape(drawAPI) {
    override fun draw() {
        drawAPI.drawCircle(radius, x, y)
    }
}

fun main() {
    val redCircle: BridgeShape = BridgeCircle(100, 100, 10, RedCircle())
    val greenCircle: BridgeShape = BridgeCircle(100, 100, 10, GreenCircle())
    redCircle.draw()
    greenCircle.draw()
}

6.组合模式

定义:有时又叫作部分-整体模式,它是一种将对象组合成树状的层次结构的模式,用来表示“部分-整体”的关系,使用户对单个对象和组合对象具有一致的访问性

class Employee(private val name: String, private val dept: String, private val salary: Int) {
    private val subordinates: MutableList<Employee>
    fun add(e: Employee) {
        subordinates.add(e)
    }

    fun remove(e: Employee) {
        subordinates.remove(e)
    }

    fun getSubordinates(): List<Employee> {
        return subordinates
    }

    override fun toString(): String {
        return ("Employee :[ Name : " + name
                + ", dept : " + dept + ", salary :"
                + salary + " ]")
    }
    //构造函数
    init {
        subordinates = ArrayList()
    }
}

7享元设计模式

定义:主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结构的方式。

interface IFlyweight {
    fun print()
}

class Flyweight(val id: String) : IFlyweight {

    override fun print() {
        println("Flyweight.id = $id ...")
    }
}

class FlyweightFactory {
    private val flyweightMap: MutableMap<String?, IFlyweight?> = HashMap<Any?, Any?>()
    fun getFlyweight(str: String?): IFlyweight {
        var flyweight = flyweightMap[str]
        if (flyweight == null) {
            flyweight = Flyweight(str!!)
            flyweightMap[str] = flyweight
        }
        return flyweight
    }

    fun getFlyweightMapSize(): Int {
        return flyweightMap.size
    }
}

    fun main(args: Array<String>) {
        val flyweightFactory = FlyweightFactory()
        val flyweight1 = flyweightFactory.getFlyweight("A")
        val flyweight2 = flyweightFactory.getFlyweight("B")
        val flyweight3 = flyweightFactory.getFlyweight("A")
        flyweight1.print()
        flyweight2.print()
        flyweight3.print()
        println(flyweightFactory.getFlyweightMapSize())
   }
上一篇 下一篇

猜你喜欢

热点阅读