Runtime初始化alloc
2019-01-22 本文已影响8人
昵称是乱起的
alloc主要是做了isa的初始化,先看下isa_t联合体的结构
union isa_t
{
Class cls;
uintptr_t bits;
struct {
uintptr_t nonpointer : 1;
uintptr_t has_assoc : 1;
uintptr_t has_cxx_dtor : 1;
uintptr_t shiftcls : 33; // MACH_VM_MAX_ADDRESS 0x1000000000
uintptr_t magic : 6;
uintptr_t weakly_referenced : 1;
uintptr_t deallocating : 1;
uintptr_t has_sidetable_rc : 1;
uintptr_t extra_rc : 19;
};
}
nonpointer
0,代表普通的指针,存储着Class、Meta-Class对象的内存地址
1,代表优化过,使用位域存储更多的信息
has_assoc
是否有设置过关联对象,如果没有,释放时会更快
has_cxx_dtor
是否有C++的析构函数(.cxx_destruct),如果没有,释放时会更快
shiftcls
存储着Class、Meta-Class对象的内存地址信息
magic
用于在调试时分辨对象是否未完成初始化
weakly_referenced
是否有被弱引用指向过,如果没有,释放时会更快
deallocating
对象是否正在释放
has_sidetable_rc
引用计数器是否过大无法存储在isa中
如果为1,那么引用计数会存储在一个叫SideTable的类的属性中
extra_rc
里面存储的值是引用计数器减1
#alloc的调用栈
- alloc
- objc_rootAlloc(cls);
- callAlloc(cls, false, false);
- class_createInstance(cls, 0);
- _class_createInstanceFromZone(cls, 0, nil);
- initInstanceIsa(Class cls, bool hasCxxDtor)
- initIsa(Class cls, bool nonpointer, bool hasCxxDtor)
+ (id)alloc {
return _objc_rootAlloc(self);
}
id _objc_rootAlloc(Class cls)
{
return callAlloc(cls, false/*checkNil*/, true/*allocWithZone*/);
}
static ALWAYS_INLINE id
callAlloc(Class cls, bool checkNil, bool allocWithZone=false)
{
//__builtin_expect 起的是优化性能的作用,fastpath(x) 表示 x 较大概率为真,slowpath(x) 表示 x 较大概率为假
if (slowpath(checkNil && !cls)) return nil;
#if __OBJC2__
//没有自己实现alloc/allocWithZone就走if里面的系统实现
if (fastpath(!cls->ISA()->hasCustomAWZ())) {
// No alloc/allocWithZone implementation. Go straight to the allocator.
// fixme store hasCustomAWZ in the non-meta class and
// add it to canAllocFast's summary
if (fastpath(cls->canAllocFast())) {//这个地方固定返回false,直接看else就行
// No ctors, raw isa, etc. Go straight to the metal.
bool dtor = cls->hasCxxDtor();
id obj = (id)calloc(1, cls->bits.fastInstanceSize());
if (slowpath(!obj)) return callBadAllocHandler(cls);
obj->initInstanceIsa(cls, dtor);
return obj;
}
else {
// Has ctor or raw isa or something. Use the slower path.
//重点关心的
id obj = class_createInstance(cls, 0);
//做一些错误处理,不需要关系
if (slowpath(!obj)) return callBadAllocHandler(cls);
return obj;
}
}
#endif
// No shortcuts available.
if (allocWithZone) return [cls allocWithZone:nil];
return [cls alloc];
}
id class_createInstance(Class cls, size_t extraBytes)
{
return _class_createInstanceFromZone(cls, extraBytes, nil);
}
static __attribute__((always_inline))
id
_class_createInstanceFromZone(Class cls, size_t extraBytes, void *zone,
bool cxxConstruct = true,
size_t *outAllocatedSize = nil)
{
if (!cls) return nil;
assert(cls->isRealized());
// Read class's info bits all at once for performance
//类构造函数和析构函数
bool hasCxxCtor = cls->hasCxxCtor();
bool hasCxxDtor = cls->hasCxxDtor();
//支持isa_t 类型
bool fast = cls->canAllocNonpointer();
//根据内存对齐原则,最少分配16字节的内存
size_t size = cls->instanceSize(extraBytes);
if (outAllocatedSize) *outAllocatedSize = size;
id obj;
if (!zone && fast) {//能进来这里
obj = (id)calloc(1, size);
if (!obj) return nil;
//isa的初始化
obj->initInstanceIsa(cls, hasCxxDtor);
}
else {
if (zone) {
obj = (id)malloc_zone_calloc ((malloc_zone_t *)zone, 1, size);
} else {
obj = (id)calloc(1, size);
}
if (!obj) return nil;
// Use raw pointer isa on the assumption that they might be
// doing something weird with the zone or RR.
obj->initIsa(cls);
}
if (cxxConstruct && hasCxxCtor) {
obj = _objc_constructOrFree(obj, cls);
}
return obj;
}
//分配内存大小
uint32_t alignedInstanceSize() {
return word_align(unalignedInstanceSize());
}
size_t instanceSize(size_t extraBytes) {
size_t size = alignedInstanceSize() + extraBytes;
// CF requires all objects be at least 16 bytes.
if (size < 16) size = 16;
return size;
}
inline void
objc_object::initInstanceIsa(Class cls, bool hasCxxDtor)
{
assert(!cls->instancesRequireRawIsa());
assert(hasCxxDtor == cls->hasCxxDtor());
initIsa(cls, true, hasCxxDtor);
}
inline void
objc_object::initIsa(Class cls, bool nonpointer, bool hasCxxDtor)
{
assert(!isTaggedPointer());
if (!nonpointer) {
isa.cls = cls;
} else {//会来到这里面
assert(!DisableNonpointerIsa);
assert(!cls->instancesRequireRawIsa());
//初始化一个所有位为 0 的指针
isa_t newisa(0);
#if SUPPORT_INDEXED_ISA
assert(cls->classArrayIndex() > 0);
newisa.bits = ISA_INDEX_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = hasCxxDtor;
newisa.indexcls = (uintptr_t)cls->classArrayIndex();
#else//会走这里
//先将 newisa 的 bits 赋值为常量 ISA_MAGIC_VALUE,里面包括了 magic 和 nonpointer 的值
newisa.bits = ISA_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
//有 C++ 析构函数标示上
newisa.has_cxx_dtor = hasCxxDtor;
//cls右移3位的原因是机器内存对齐的原因,最后的3位值都是0,右移后没有影响
newisa.shiftcls = (uintptr_t)cls >> 3;
#endif
// This write must be performed in a single store in some cases
// (for example when realizing a class because other threads
// may simultaneously try to use the class).
// fixme use atomics here to guarantee single-store and to
// guarantee memory order w.r.t. the class index table
// ...but not too atomic because we don't want to hurt instantiation
isa = newisa;
}
}
初始化完成后的isa结构,从右往左,从上往下看,64位域的分配图
image.png
init的底层其实什么也没做
- (id)init {
return _objc_rootInit(self);
}
id _objc_rootInit(id obj)
{
// In practice, it will be hard to rely on this function.
// Many classes do not properly chain -init calls.
return obj;
}