2017.12.05 HashMap的原理
HashMap概述
HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。
HashMap的数据结构
在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。
从上图中可以看出,HashMap底层就是一个数组结构,数组中的每一项又是一个链表。当新建一个HashMap的时候,就会初始化一个数组。
我们通过JDK中的HashMap源码进行一些学习,首先看一下构造函数:
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
// Find a power of 2 >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
this.loadFactor = loadFactor;
threshold = (int)Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity];
useAltHashing = sun.misc.VM.isBooted() &&
(capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
init();
}
我们着重看一下第18行代码table = new Entry[capacity]; 这不就是Java中数组的创建方式吗?也就是说在构造函数中,其创建了一个Entry的数组,其大小为capacity(目前我们还不需要太了解该变量含义),那么Entry又是什么结构呢?看一下源码:
transient Entry<K,V>[] table;
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
final int hash;
……
}
Entry是一个static class,其中包含了key和value,也就是键值对,另外还包含了一个next的Entry指针。我们可以总结出:Entry就是数组中的元素,每个Entry其实就是一个key-value对,它持有一个指向下一个元素的引用,这就构成了链表。
HashMap的核心方法解读
-
存储
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
//其允许存放null的key和null的value,当其key为null时,调用putForNullKey方法,放入到table[0]的这个位置
if (key == null)
return putForNullKey(value);
//通过调用hash方法对key进行哈希,得到哈希之后的数值。该方法实现可以通过看源码,其目的是为了尽可能的让键值对可以分不到不同的桶中
int hash = hash(key);
//根据上一步骤中求出的hash得到在数组中是索引i
int i = indexFor(hash, table.length);
//如果i处的Entry不为null,则通过其next指针不断遍历e元素的下一个元素。
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(hash, key, value, i);
return null;
}
我们看一下方法的标准注释:在注释中首先提到了,当我们put的时候,如果key存在了,那么新的value会代替旧的value,并且如果key存在的情况下,该方法返回的是旧的value,如果key不存在,那么返回null。
从上面的源代码中可以看出:当我们往HashMap中put元素的时候,先根据key的hashCode重新计算hash值,根据hash值得到这个元素在数组中的位置(即下标), 如果数组该位置上已经存放有其他元素了,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。如果数组该位置上没有元素,就直接将该元素放到此数组中的该位置上。
addEntry(hash, key, value, i)方法根据计算出的hash值,将key-value对放在数组table的i索引处。addEntry 是 HashMap 提供的一个包访问权限的方法,代码如下:
/**
* Adds a new entry with the specified key, value and hash code to
* the specified bucket. It is the responsibility of this
* method to resize the table if appropriate.
*
* Subclass overrides this to alter the behavior of put method.
*/
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
createEntry(hash, key, value, bucketIndex);
}
void createEntry(int hash, K key, V value, int bucketIndex) {
// 获取指定 bucketIndex 索引处的 Entry
Entry<K,V> e = table[bucketIndex];
// 将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entr
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
当系统决定存储HashMap中的key-value对时,完全没有考虑Entry中的value,仅仅只是根据key来计算并决定每个Entry的存储位置。我们完全可以把 Map 集合中的 value 当成 key 的附属,当系统决定了 key 的存储位置之后,value 随之保存在那里即可。
hash(int h)方法根据key的hashCode重新计算一次散列。此算法加入了高位计算,防止低位不变,高位变化时,造成的hash冲突。
final int hash(Object k) {
int h = 0;
if (useAltHashing) {
if (k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}
h = hashSeed;
}
//得到k的hashcode值
h ^= k.hashCode();
//进行计算
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
我们可以看到在HashMap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的 元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表,这样就大大优化了查询的效率。
对于任意给定的对象,只要它的 hashCode() 返回值相同,那么程序调用 hash(int h) 方法所计算得到的 hash 码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,在HashMap中是这样做的:调用 indexFor(int h, int length) 方法来计算该对象应该保存在 table 数组的哪个索引处。indexFor(int h, int length) 方法的代码如下:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
return h & (length-1);
}
这个方法非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而HashMap底层数组的长度总是 2 的 n 次方,这是HashMap在速度上的优化。在 HashMap 构造器中有如下代码:
// Find a power of 2 >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
这段代码保证初始化时HashMap的容量总是2的n次方,即底层数组的长度总是为2的n次方。
当length总是 2 的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。这看上去很简单,其实比较有玄机的,我们举个例子来说明:
假设数组长度分别为15和16,优化后的hash码分别为8和9,那么&运算后的结果如下:
从上面的例子中可以看出:当它们和15-1(1110)“与”的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到数组中的同一个位置上形成链表,那么查询的时候就需要遍历这个链 表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为15的时候,hash值会与15-1(1110)进行“与”,那么最后一位永远是0,而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率!而当数组长度为16时,即为2的n次方时,2n-1得到的二进制数的每个位上的值都为1,这使得在低位上&时,得到的和原hash的低位相同,加之hash(int h)方法对key的hashCode的进一步优化,加入了高位计算,就使得只有相同的hash值的两个值才会被放到数组中的同一个位置上形成链表。
所以说,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。
根据上面 put 方法的源代码可以看出,当程序试图将一个key-value对放入HashMap中时,程序首先根据该 key 的 hashCode() 返回值决定该 Entry 的存储位置:如果两个 Entry 的 key 的 hashCode() 返回值相同,那它们的存储位置相同。如果这两个 Entry 的 key 通过 equals 比较返回 true,新添加 Entry 的 value 将覆盖集合中原有 Entry 的 value,但key不会覆盖。如果这两个 Entry 的 key 通过 equals 比较返回 false,新添加的 Entry 将与集合中原有 Entry 形成 Entry 链,而且新添加的 Entry 位于 Entry 链的头部——具体说明继续看 addEntry() 方法的说明。
-
存储
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(Object, Object)
*/
public V get(Object key) {
if (key == null)
return getForNullKey();
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
final Entry<K,V> getEntry(Object key) {
int hash = (key == null) ? 0 : hash(key);
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
有了上面存储时的hash算法作为基础,理解起来这段代码就很容易了。从上面的源代码中可以看出:从HashMap中get元素时,首先计算key的hashCode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。
归纳
简单地说,HashMap 在底层将 key-value 当成一个整体进行处理,这个整体就是一个 Entry 对象。HashMap 底层采用一个 Entry[] 数组来保存所有的 key-value 对,当需要存储一个 Entry 对象时,会根据hash算法来决定其在数组中的存储位置,在根据equals方法决定其在该数组位置上的链表中的存储位置;当需要取出一个Entry时,也会根据hash算法找到其在数组中的存储位置,再根据equals方法从该位置上的链表中取出该Entry。
HashMap的resize(rehash)
当HashMap中的元素越来越多的时候,hash冲突的几率也就越来越高,因为数组的长度是固定的。所以为了提高查询的效率,就要对HashMap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,这是一个常用的操作,而在HashMap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。
那么HashMap什么时候进行扩容呢?当HashMap中的元素个数超过数组大小loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中元素个数超过16 * 0.75=12的时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。
HashMap的性能参数
HashMap 包含如下几个构造器:
- HashMap():构建一个初始容量为 16,负载因子为 0.75 的 HashMap。
- ashMap(int initialCapacity):构建一个初始容量为 initialCapacity,负载因子为 0.75 的 HashMap。
- HashMap(int initialCapacity, float loadFactor):以指定初始容量、指定的负载因子创建一个 HashMap。
HashMap的基础构造器HashMap(int initialCapacity, float loadFactor)带有两个参数,它们是初始容量initialCapacity和负载因子loadFactor。
负载因子loadFactor衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。
HashMap的实现中,通过threshold字段来判断HashMap的最大容量:
threshold = (int)(capacity * loadFactor);
结合负载因子的定义公式可知,threshold就是在此loadFactor和capacity对应下允许的最大元素数目,超过这个数目就重新resize,以降低实际的负载因子。默认的的负载因子0.75是对空间和时间效率的一个平衡选择。当容量超出此最大容量时, resize后的HashMap容量是容量的两倍。
Fail-Fast机制
我们知道java.util.HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map,那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略。
-
原理
我们知道java.util.HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map,那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略。
fail-fast 机制是java集合(Collection)中的一种错误机制。 当多个线程对同一个集合的内容进行操作时,就可能会产生 fail-fast 事件。
例如:当某一个线程A通过 iterator去遍历某集合的过程中,若该集合的内容被其他线程所改变了;那么线程A访问集合时,就会抛出 ConcurrentModificationException异常,产生 fail-fast 事件。
这一策略在源码中的实现是通过modCount域,modCount顾名思义就是修改次数,对HashMap内容(当然不仅仅是HashMap才会有,其他例如ArrayList也会)的修改都将增加这个值(大家可以再回头看一下其源码,在很多操作中都有modCount++这句),那么在迭代器初始化过程中会将这个值赋给迭代器的expectedModCount。
HashIterator() {
expectedModCount = modCount;
if (size > 0) { // advance to first entry
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
}
在迭代过程中,判断modCount跟expectedModCount是否相等,如果不相等就表示已经有其他线程修改了Map:
注意到modCount声明为volatile,保证线程之间修改的可见性。
final Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
在HashMap的API中指出:
由所有HashMap类的“collection 视图方法”所返回的迭代器都是快速失败的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器本身的 remove 方法,其他任何时间任何方式的修改,迭代器都将抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不冒在将来不确定的时间发生任意不确定行为的风险。
注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。
-
解决方案
从Java 5开始,我们就拥有一个更好的、保证线程安全的HashMap实现:ConcurrentHashMap。对于ConcurrentMap来说,只有桶是同步的,这样如果多个线程不使用同一个桶或者调整内部数组的大小,它们可以同时调用get()、remove()或者put()方法。在一个多线程应用程序中,这种方式是更好的选择。
Java 8 中的改进
在Java 8中,HashMap中的内部实现进行了很多修改。的确如此,Java 7使用了1000行代码来实现,而Java 8中使用了2000行代码。我在前面描述的大部分内容在Java 8中依然是对的,除了使用链表来保存Entry对象。在Java 8中,我们仍然使用数组,但它会被保存在Node中,Node中包含了和之前Entry对象一样的信息,并且也会使用链表:
下面是在Java 8中Node实现的一部分代码:
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
那么和Java 7相比,到底有什么大的区别呢?好吧,Node可以被扩展成TreeNode。TreeNode是一个红黑树的数据结构,它可以存储更多的信息,这样我们可以在O(log(n))的复杂度下添加、删除或者获取一个元素。下面的示例描述了TreeNode保存的所有信息:
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
final int hash; // inherited from Node<K,V>
final K key; // inherited from Node<K,V>
V value; // inherited from Node<K,V>
Node<K,V> next; // inherited from Node<K,V>
Entry<K,V> before, after;// inherited from LinkedHashMap.Entry<K,V>
TreeNode<K,V> parent;
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev;
boolean red;
红黑树是自平衡的二叉搜索树。它的内部机制可以保证它的长度总是log(n),不管我们是添加还是删除节点。使用这种类型的树,最主要的好处是针对内部表中许多数据都具有相同索引(桶)的情况,这时对树进行搜索的复杂度是O(log(n)),而对于链表来说,执行相同的操作,复杂度是O(n)。
如你所见,我们在树中确实存储了比链表更多的数据。根据继承原则,内部表中可以包含Node(链表)或者TreeNode(红黑树)。Oracle决定根据下面的规则来使用这两种数据结构:
-
对于内部表中的指定索引(桶),如果node的数目多于8个,那么链表就会被转换成红黑树。
-
对于内部表中的指定索引(桶),如果node的数目小于6个,那么红黑树就会被转换成链表。
这张图片描述了在Java 8 HashMap中的内部数组,它既包含树(桶0),也包含链表(桶1,2和3)。桶0是一个树结构是因为它包含的节点大于8个。
内存开销
JAVA 7
使用HashMap会消耗一些内存。在Java 7中,HashMap将键值对封装成Entry对象,一个Entry对象包含以下信息:
- 指向下一个记录的引用
- 一个预先计算的哈希值(整数)
- 一个指向键的引用
- 一个指向值的引用
此外,Java 7中的HashMap使用了Entry对象的内部数组。假设一个Java 7 HashMap包含N个元素,它的内部数组的容量是CAPACITY,那么额外的内存消耗大约是:
sizeOf(integer)* N + sizeOf(reference)* (3*N+C)
其中:
- 整数的大小是4个字节
- 引用的大小依赖于JVM、操作系统以及处理器,但通常都是4个字节。
注意:在Map自动调整大小后,CAPACITY的值是下一个大于N的最小的2的幂值。
注意:从Java 7开始,HashMap采用了延迟加载的机制。这意味着即使你为HashMap指定了大小,在我们第一次使用put()方法之前,记录使用的内部数组(耗费4*CAPACITY字节)也不会在内存中分配空间。
JAVA 8
在Java 8实现中,计算内存使用情况变得复杂一些,因为Node可能会和Entry存储相同的数据,或者在此基础上再增加6个引用和一个Boolean属性(指定是否是TreeNode)。
如果所有的节点都只是Node,那么Java 8 HashMap消耗的内存和Java 7 HashMap消耗的内存是一样的。
如果所有的节点都是TreeNode,那么Java 8 HashMap消耗的内存就变成:
N * sizeOf(integer) + N * sizeOf(boolean) + sizeOf(reference)* (9*N+CAPACITY )
在大部分标准JVM中,上述公式的结果是44 * N + 4 * CAPACITY 字节。
性能问题
非对称HashMap vs 均衡HashMap
在最好的情况下,get()和put()方法都只有O(1)的复杂度。但是,如果你不去关心键的哈希函数,那么你的put()和get()方法可能会执行非常慢。put()和get()方法的高效执行,取决于数据被分配到内部数组(桶)的不同的索引上。如果键的哈希函数设计不合理,你会得到一个非对称的分区(不管内部数据的是多大)。所有的put()和get()方法会使用最大的链表,这样就会执行很慢,因为它需要迭代链表中的全部记录。在最坏的情况下(如果大部分数据都在同一个桶上),那么你的时间复杂度就会变为O(n)。
下面是一个可视化的示例。第一张图描述了一个非对称HashMap,第二张图描述了一个均衡HashMap。
非均衡的hash结果在这个非对称HashMap中,在桶0上运行get()和put()方法会很花费时间。获取记录K需要花费6次迭代。
均衡的hash结果
在这个均衡HashMap中,获取记录K只需要花费3次迭代。这两个HashMap存储了相同数量的数据,并且内部数组的大小一样。唯一的区别是键的哈希函数,这个函数用来将记录分布到不同的桶上。
下面是一个使用Java编写的极端示例,在这个示例中,我使用哈希函数将所有的数据放到相同的链表(桶),然后我添加了2,000,000条数据。
public class Test {
public static void main(String[] args) {
class MyKey {
Integer i;
public MyKey(Integer i){
this.i =i;
}
@Override
public int hashCode() {
return 1;
}
@Override
public boolean equals(Object obj) {
…
}
}
Date begin = new Date();
Map <MyKey,String> myMap= new HashMap<>(2_500_000,1);
for (int i=0;i<2_000_000;i++){
myMap.put( new MyKey(i), "test "+i);
}
Date end = new Date();
System.out.println("Duration (ms) "+ (end.getTime()-begin.getTime()));
}
}
我的机器配置是core i5-2500k @ 3.6G,在java 8u40下需要花费超过45分钟的时间来运行(我在45分钟后停止了进程)。如果我运行同样的代码, 但是我使用如下的hash函数:
@Override
public int hashCode() {
int key = 2097152-1;
return key+2097152*i;
}
运行它需要花费46秒,和之前比,这种方式好很多了!新的hash函数比旧的hash函数在处理哈希分区时更合理,因此调用put()方法会更快一些。如果你现在运行相同的代码,但是使用下面的hash函数,它提供了更好的哈希分区:
@Override
public int hashCode() {
return i;
}
现在只需要花费2秒!
我希望你能够意识到哈希函数有多重要。如果在Java 7上面运行同样的测试,第一个和第二个的情况会更糟(因为Java 7中的put()方法复杂度是O(n),而Java 8中的复杂度是O(log(n))。
在使用HashMap时,你需要针对键找到一种哈希函数,可以将键扩散到最可能的桶上。为此,你需要避免哈希冲突。String对象是一个非常好的键,因为它有很好的哈希函数。Integer也很好,因为它的哈希值就是它自身的值。