Week 10
Herman Verlinder, "Deconstructing the Wormhole: Factorization, Entanglement and Decoherence"
解构wormhole!
wormhole的研究又开始进入了主流,虽然已经开始吸引大家的注意,但是并没有像AdS/CFT那样让人信服,很多时候,并不清楚到底我们要解决什么问题。或者说怎样把在这方面的进展和之前的结果联系起来。问题主要有两个:
- 怎样去理解 replica wormhole 还有 类似于double cone geometry这类spacetime wormhole;
- 我们能用他们来解释其他的问题吗?
这两类wormhole,从本质上来说,还是很不一样的,分别计算了不同的物理量。
Replica wormhole
当我们讨论replica wormhole的时候,其实我们是在考虑一个density matrix 或者是一个wavefunctional ,给定了一个边界态,就可以具体的写出这个wavefunction 。所以我们计算. 如果 是一个纯态且可以normlized,那么这个trace就是计算的normal,可以归一化为1. 我们也可以想象,是一个reduced density matrix ,就是我们trace 掉系统的一部分。对于一个mixed state,我们就没有了wavefunctional 的描述了。但是我们还是可以用一个路径积分来描述这个reduced density matrix。比如我们可以purify这个mixed state的到另一个pure state,然后用路径积分来描述这个wavefunctional。
对于,如果我们知道了所有的,让可以直接算出,但是实际操作的时候,就是要制备很多的,然后去算测量不同矩阵元。比如我们想算霍金辐射的,那么我们要准备很多这样的黑洞系统,然后分别收集霍金辐射。但是我们不可能真正制备很多这样独立的系统,因为他们都是被引力couple起来的,虽然可以argue 这些黑洞系统可以离的很远,然后可以忽律引力的couple。或许这里可以得到的测不准不等式,也会存在一个purity的lower bound。也就是我们无法精确测量。如果我们把看做是一个散射振幅,那么我可以的测量结果可以写成
这里,是指辐射碰到黑洞1然后到,而是说辐射穿过黑洞1来到另外一个黑洞2然后到。这里描述也是schematic的,可能不是完全正确。不过核心的想法就是,当路径积分涉及到黑洞的时候,要多考虑的一种可能是,黑洞的内部可能互相连接形成虫洞。
Spacetime wormhole
所有具有多个边界的引力的解都可以认为是wormhole。假设有两个这样的边界,欧式的话,每个边界上有一个thermal circle, 参数为 ,那么我们计算partition function ,这个结果应该不等于.
在AdS/CFT的图像下,我们考虑一个CFT,或者一个更一般的量子混沌理论。混沌的量子理论有一些universal的行为,比如他的spectrum form factor
. Spectral form factor 随时间的变化具有几个阶段,slope,ramp,plateau。slope 就是开始的decoherence的阶段。而plateau是最后完全dephasing然后saturate的阶段,但是中间为什么会出现换一个ramp的拐点,我们称为dip,呢?
从SYK还有JT引力的例子来看,有些人认为是因为出现了新的saddle point,是由一个 这样的wormhole saddle,称为double trumpet或者double cone geometry 得到。
我们可以怎样理解这件事呢?
我们考虑TFD
那么我们发现
这里有个干涉项,如果 or 我们期待,这时我们有. 也可以认为我们做了一个time average
一种理解方式是在后期的时候失去了它的相位,可以假设它与环境相互作用发生了decoherence最后完成了dephasing。
Verlinder的想法是我们利用同样的图像来理解dip,这时候对应的处在某种相干抵消的情况,也就是说相位没有完全消失,还存在量子关联。