决策树(Decision Tree)——Python机器学习(一
2017-05-16 本文已影响576人
我叫钱小钱

决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。类似这样~

code
import csv
from sklearn.feature_extraction import DictVectorizer
from sklearn.externals.six import StringIO
from sklearn import tree
from sklearn import preprocessing
file = open(r"D:\pypro\mleaning\tree.csv", "r")
coll = csv.reader(file)
lab = []
fature = []
tab = [t[0] for t in coll]
tit = tab[0].split("\t")
for r in tab[1:]:
lab.append(r[-1])
r1 = r.split("\t")
rowdict = {tit[cnt]: r1[cnt] for cnt in range(1,5)}
fature.append(rowdict)
# print(fature)
# print(lab)
vec = DictVectorizer()
dummyx = vec.fit_transform(fature).toarray()
print(dummyx)
print(vec.get_feature_names())
lb = preprocessing.LabelBinarizer()
dummyy = lb.fit_transform(lab)
print("dummy:" + str(dummyy))
dectree = tree.DecisionTreeClassifier(criterion="entropy")
clf = dectree.fit(dummyx, dummyy)
print("clf:" + str(clf))
由于不能上传csv附件,如有需要,欢迎大家留言交流~