探究Handler的运行机制

2020-02-04  本文已影响0人  零星瓢虫

Handler 作为 Android 开发中重要的消息通讯的工具,在我们日常开发中经常使用到,虽然经藏使用,也是一知半解,所以今天就去看一下 Handler 的源码到底怎么实现的呢?

1 Handler 是什么呢?
众 android 开发者周知, Handler 是我们用来进行线程间通讯的工具。像我们网络请求返回的数据,就会经常使用Handler把数据回传给主线程。然后主线程展示相关数据。

2 为什么要用 Handler 呢?
android 要求耗时的任务要在子线程中进行,不然会造成UI界面的卡顿,而我们的 UI 界面是在主线程。要把子线程的数据显示到主线程则就要用到 handler 了,不然,你在子线程直接刷新UI界面,程序会报错。

3 看下我们平时如何用 Handler 的呢?

public class TestActivity extends AppCompatActivity {

    Handler handler = new Handler(){
        @Override
        public void handleMessage(@NonNull Message msg) {
            switch (msg.what){
                case 0x1111:
                    Toast.makeText(this,"收到子线程发来的消息了",Toast.LENGTH_LONG).show();
                    break;
            }
        }
    };

    @Override
    protected void onCreate(@Nullable Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);

        new Thread(){
            @Override
            public void run() {
                Message message = Message.obtain();
                message.obj = "这是一个handler消息";
                message.what = 0x1111;
                handler.sendMessage(message);
            }
        };

    }
}

上面代码是我们 Handler 的常用方式,接下来去看下它内部具体是怎么实现的呢?进入源码中去查看;

(1) 首先咱们看一下创建Handler都去做了哪些工作。

  Handler handler = new Handler(){
            @Override
            public void handleMessage(Message msg) {
                super.handleMessage(msg);
            }
        };

调用构造方法:

    public Handler() {
        this(null, false);
    }
  public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

可以看到 handler 构造的过程中,如果你定义 handler 用了 static 修饰符的话,还会提示你会出现内存溢出的风险(这里和静态持有 Activity 有关)。接下来会去获取到一个 Looper 对象。同时把
Looper 类里面的消息队列 mLooper.mQueue 赋值给了 Handler 类里面的队列常量 mQueue。下面我们继续看如何获取 Looper 对象的。

mLooper = Looper.myLooper();
进入到Looper类中。

  public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
private static Looper sMainLooper;  // guarded by Looper.class
final MessageQueue mQueue;

在 Looper 类里面维护了一个 sThreadLocal 的常量,我们获取到的 looper 是从这个常量中取的,既然是取的,那就一定会有地方去存储这个变量,并且这个设置的方法一定在我们构造函数之前。我们沿着关键字搜索发现在 prepare 方法的确有设置 looper 的方法:

   public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

那我们会在哪里去调用 prepare 方法呢,于是按着方法调用一路往上寻找:

 public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

这里看门看到 Looper 类中的调用 prepareMainLooper() 方法,这里如果我们是在主线程里面创建的 Handler 对象就会调用到 prepareMainLooper() 方法,而事例中我们就是在主线程中调用,继续去查找调用 prepareMainLooper 方法的地方:

public static void main(String[] args) {
        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");

        // CloseGuard defaults to true and can be quite spammy.  We
        // disable it here, but selectively enable it later (via
        // StrictMode) on debug builds, but using DropBox, not logs.
        CloseGuard.setEnabled(false);

        Environment.initForCurrentUser();

        // Set the reporter for event logging in libcore
        EventLogger.setReporter(new EventLoggingReporter());

        // Make sure TrustedCertificateStore looks in the right place for CA certificates
        final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
        TrustedCertificateStore.setDefaultUserDirectory(configDir);

        Process.setArgV0("<pre-initialized>");

        Looper.prepareMainLooper();

        // Find the value for {@link #PROC_START_SEQ_IDENT} if provided on the command line.
        // It will be in the format "seq=114"
        long startSeq = 0;
        if (args != null) {
            for (int i = args.length - 1; i >= 0; --i) {
                if (args[i] != null && args[i].startsWith(PROC_START_SEQ_IDENT)) {
                    startSeq = Long.parseLong(
                            args[i].substring(PROC_START_SEQ_IDENT.length()));
                }
            }
        }
        ActivityThread thread = new ActivityThread();
        thread.attach(false, startSeq);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

因为和主线程有关,我们就可以看看与主线程相关的线程类,在 ActivityThread 类主运行程序中找到了 prepareMainLooper() 方法,同时证明了在主线程中的确在我们构造 Handler 之前就已经初始化了 Looper 这个类,并设置到了ThreadLocal对象中。同时代码最后有个 Looper.loop() 方法先记下来,后续这里也会提到。

Looper 类的设置和获取在这里都已经完成。这了顺便看一下为什么 Looper 创建了之后要放在一个 ThreadLocal 对象的数据结构里面?去看看 ThreadLocal 这个类干嘛的:

   public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }


   public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

因为在 ThreadLocal 中主要用了 get 和 set 方法,我们主要看这两个方法。在这里,看到我们有个 ThreadLocalMap 通过线程 Thread 获取的。于是我们可以猜想到 ThreadLocal 是为了保证每个线程对应一个Looper,这样保证每个线程独享一份数据。

到这里我们 Handler 整个初始化的过程涉及到的类进行了挖掘。目前主要涉及到Handler、Looper、ThreadLocal、MessageQueue 四个类。

(2) 接下来我们看在子线程里面发送消息的时候,此时这些类又做了些什么呢?有没有其他的类再次参与进来呢?

接下来继续 Handler 类中发送消息的相关代码细节:

    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }


   public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

   private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

sendMessage 方法最终会调用到 MessageQueue 里面的enqueueMessage 方法,继续到 MessageQueue 里面去查看相关方法:

 boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;

定位到上述这段主要代码,记录当前msg相关信息,并且如果当前MessageQueue 的 mMessages 为空的时候则会把这条消息当作第一条消息,设置相关的标记位。如果不为空,遍历循环出需要wake 唤醒发送的消息,则加到最后一条去。这里同时可以看到 MessageQueue 数据结构采用的是链表结构。最后调用到nativeWake 明显到了 native 层的调用,我们从处理消息的代码再进行回推。

我们继续来到Handler类中,查找处理消息的 handleMessage 方法:

    public void handleMessage(Message msg) {
    }
    
    /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

dispatchMessage 后在 Handler 类中没发现其他地方调用,在上面提到的其他三个相关联的类再去找找。

最终我们来到 Looper 类中的 loop 方法,里面可以看到 msg.target.dispatchMessage(msg) 方法,loop 这个方法我们在ActivityThread 中提到过会被调用,也就是说程序主线程启动的时候 dispatchMessage 方法就在一直执行了 ,那就看看 loop 到底在干啥吧:

  public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        // Allow overriding a threshold with a system prop. e.g.
        // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
        final int thresholdOverride =
                SystemProperties.getInt("log.looper."
                        + Process.myUid() + "."
                        + Thread.currentThread().getName()
                        + ".slow", 0);

        boolean slowDeliveryDetected = false;

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long traceTag = me.mTraceTag;
            long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
            long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
            if (thresholdOverride > 0) {
                slowDispatchThresholdMs = thresholdOverride;
                slowDeliveryThresholdMs = thresholdOverride;
            }
            final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
            final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);

            final boolean needStartTime = logSlowDelivery || logSlowDispatch;
            final boolean needEndTime = logSlowDispatch;

            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }

            final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
            final long dispatchEnd;
            try {
                msg.target.dispatchMessage(msg);
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (logSlowDelivery) {
                if (slowDeliveryDetected) {
                    if ((dispatchStart - msg.when) <= 10) {
                        Slog.w(TAG, "Drained");
                        slowDeliveryDetected = false;
                    }
                } else {
                    if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                            msg)) {
                        // Once we write a slow delivery log, suppress until the queue drains.
                        slowDeliveryDetected = true;
                    }
                }
            }
            if (logSlowDispatch) {
                showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

定位到for语句死循环那段代码:

for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
....
}

不断遍历去取消息队列里面的数据,只有当拿不到 msg 数据的时候会停止。 继续看 MessageQueue 类中 queue.next() 方法:

Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

这里可以看到其实 next() 方法里面也有个死循环,其主要的作用就是要去取到下一个待处理的 msg,取到 msg 之后最终会传到 handler 的 handlerMessage 方法进行处理。这样我们就从handlerMessage 方法中取到了下一条待处理的消息数据;

至此整个方法链就连上了。最后我们总结一下:
1 首先,创建 Handler 的主线程会通过 ActivityThread 去创建一个 Looper ,并通过 prepare 方法,把当前线程和 Looper 绑定存到一个 ThreadLocal 类中。同时会开启 Looper 的 loop() 方法进行死循环查找信息。

2 当 Handler 初始化的时候,handler 会拿到 looper 类,同时将 looper 的 MessageQueue 赋值给 handler 中的 MessageQueue 队列。

3 Handler发送消息,此时会将消息添加到 handler 中的 MessageQueue 的最后面,同时 Looper 中的 looper 循环会取 MessgeQueue 中的消息,通过 Handler 的 dispatchMessage 分发到handlerMessage 最终处理调 msg 事件信息。

最后有个面试问到的问题,如果是在子线程里面可以创建 Handler 发送和接收消息嘛?

/**
  * Class used to run a message loop for a thread.  Threads by default do
  * not have a message loop associated with them; to create one, call
  * {@link #prepare} in the thread that is to run the loop, and then
  * {@link #loop} to have it process messages until the loop is stopped.
  *
  * <p>Most interaction with a message loop is through the
  * {@link Handler} class.
  *
  * <p>This is a typical example of the implementation of a Looper thread,
  * using the separation of {@link #prepare} and {@link #loop} to create an
  * initial Handler to communicate with the Looper.
  *
  * <pre>
  *  class LooperThread extends Thread {
  *      public Handler mHandler;
  *
  *      public void run() {
  *          Looper.prepare();
  *
  *          mHandler = new Handler() {
  *              public void handleMessage(Message msg) {
  *                  // process incoming messages here
  *              }
  *          };
  *
  *          Looper.loop();
  *      }
  *  }</pre>
  */

可以看到 Looper 类上面的注释,当然是可以的了。只不过我们要自己创建 Looper 了并且去调用 prepare 和 loop 方法循环查找消息。不然直接在子线程处理消息,程序会报错。

上一篇下一篇

猜你喜欢

热点阅读