机器学习我是程序员大数据,机器学习,人工智能

语义分割概念及应用介绍

2018-10-08  本文已影响58人  阿里云云栖号

摘要: 一份关于语义分割的基本概述,涵盖语义分割的特征和可能的用途,包括地质检测、自动驾驶、面部识别等。

近年来,以深度学习为中心的机器学习技术引起了人们的关注。比如自动驾驶汽车已经逐渐成为可能,但在整个深度学习过程,需要算法识别和学习作为原始数据提供的图像,在这一过程中,应用到了语义分割技术。下面让我们来看看语义分割的需求是如何演变的。

早期,计算机视觉的初始应用需求只是识别基本元素,例如边缘(线和曲线)或渐变。然而,仅仅通过全像素语义分割的创造来理解像素级的图像,它将属于同一目标的图像部分聚集在一起,从而扩展了语义分割的应用场景。

识别每个像素或分组像素一起分配类别的过程可以通过以下过程:

什么是语义分割?

语义分割是一种典型的计算机视觉问题,其涉及将一些原始数据(例如,平面图像)作为输入并将它们转换为具有突出显示的感兴趣区域的掩模。许多人使用术语全像素语义分割(full-pixel semantic segmentation),其中图像中的每个像素根据其所属的感兴趣对象被分配类别ID。

早期的计算机视觉问题只发现边缘(线条和曲线)或渐变等元素,但它们从未完全按照人类感知的方式提供像素级别的图像理解。语义分割将属于同一目标的图像部分聚集在一起来解决这个问题,从而扩展了其应用领域。

注意,与其他基于图像的任务相比,语义分割是完全不同的且先进的,例如,

语义分割的类型

语义分割的特征

为了理解图像分割的特征,我们还要与其他常见的图像分类技术相比较。

这一次将介绍以下三类技术领域,包括图像分割:

语义分割的应用

语义分割问题也可以被认为是分类问题,其中每个像素被分类为来自一系列对象类中的某一个。因此一个使用案例是利用土地的卫星影像制图。土地覆盖信息是重要的各种应用,如监测地区的森林砍伐和城市化等。
为了识别卫星图像上每个像素的土地覆盖类型(例如,城市、农业、水等区域),土地覆盖分类可以被视为多级语义分割任务。道路和建筑物检测也是交通管理,城市规划和道路监测的重要研究课题。
目前,几乎没有大规模公开可用的数据集(例如:SpaceNet),数据标记始终是分割任务的瓶颈。

面部的语义分割通常涉及诸如皮肤、头发、眼睛、鼻子、嘴巴和背景等的分类。面部分割在计算机视觉的许多面部应用中是有用的,例如性别、表情、年龄和种族的估计。影响人脸分割数据集和模型开发的显著因素是光照条件、面部表情、面部朝向、遮挡和图像分辨率的变化等。

由于服装数量众多,服装解析与其他服务相比是一项非常复杂的任务。这与一般的物体或场景分割问题不同,因为细粒度的衣物分类需要基于衣服的语义、人体姿势的可变性和潜在的大量类别的更高级别判断。服装解析在视觉领域中得到了积极的研究,因为它在现实世界的应用程序即电子商务中具有巨大的价值。Fashionista和CFPD数据集等一些公开的数据集促进了服装领域的语义分割研究。

精确农业机器人可以减少需要在田间喷洒的除草剂的数量,作物和杂草的语义分割可以帮助他们实时触发除草行为,这种先进的农业图像视觉技术可以减少对农业的人工监测,提高农业效率和降低生产成本。

本文作者:【方向】

阅读原文

本文为云栖社区原创内容,未经允许不得转载。

上一篇下一篇

猜你喜欢

热点阅读