LSTM机器学习与模式识别机器学习

TensorFlow深度学习笔记 循环神经网络实践

2016-06-29  本文已影响3648人  梦里茶

转载请注明作者:梦里风林
Github工程地址:https://github.com/ahangchen/GDLnotes
欢迎star,有问题可以到Issue区讨论
官方教程地址
视频/字幕下载

加载数据

text8中只包含27种字符:小写的从a到z,以及空格符。如果把它打出来,读起来就像是去掉了所有标点的wikipedia。

达成随机取数据的目标

构造计算单元

embeddings = tf.Variable(
        tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_dataset)
loss = tf.reduce_mean(
        tf.nn.sampled_softmax_loss(softmax_weights, softmax_biases, embed,
                                   train_labels, num_sampled, vocabulary_size))
optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)

传入数据进行训练

data_index = (data_index + 1) % len(data)

实现代码见word2vec.py

CBOW

上面训练的是Skip-gram模型,是根据目标词汇预测上下文,而word2vec还有一种方式,CBOW,根据上下文预测目标词汇。

实际上就是将Skip-gram中的输入输出反过来。

# Look up embeddings for inputs.
embed = tf.nn.embedding_lookup(embeddings, train_dataset)
# sum up vectors on first dimensions, as context vectors
embed_sum = tf.reduce_sum(embed, 0)

代码见:
cbow.py

RNN 造句

整体思路是,以一个文本中的一个词作为train data,后续的所有词作为train label,从而能够根据一个给定词,预测后续的片段。

训练数据

lstm-cell

  input_gate = sigmoid(i * ix + o * im + ib)
- 给输入乘一个vocabulary_size * num_nodes大小的矩阵,给输出乘一个num_nodes * num_nodes大小的矩阵;
- 用这两个矩阵调节对输入数据的取舍程度
- 用sigmoid这个非线性函数进行激活
  forget_gate = sigmoid(i * fx + o * fm + fb)

思路同输入门,用以对历史数据做取舍

  output_gate = sigmoid(i * ox + o * om + ob)

思路同输入门,用以对输出状态做取舍

  update = i * cx + o * cm + cb
  state = forget_gate * state + input_gate * tanh(update)
  lstm_cell = output_gate * tanh(state)
- 用同样的方式构造新状态update
- 用遗忘门处理历史状态state
- 用tanh激活新状态update
- 用输入门处理新状态update
- 整合新旧状态,再用tanh激活状态state
- 用输出门处理state

lstm优化

上面的cell中,update,output_gate,forget_gate,input_gate计算方法都是一样的,
可以把四组参数分别合并,一次计算,再分别取出:

values = tf.split(1, gate_count, tf.matmul(i, input_weights) + tf.matmul(o, output_weights) + bias)
input_gate = tf.sigmoid(values[0])
forget_gate = tf.sigmoid(values[1])
update = values[2]

再将lstm-cell的输出扔到一个WX+b中调整作为输出

实现代码见singlew_lstm.py

Optimizer

Flow

实现代码见lstm.py

Beam Search

上面的流程里,每次都是以一个字符作为单位,可以使用多一点的字符做预测,取最高概率的那个,防止特殊情况导致的误判

在这里我们增加字符为2个,形成bigram,代码见:bigram_lstm.py

主要通过BigramBatchGenerator类实现

Embedding look up

由于bigram情况下,vocabulary_size变为 27*27个,使用one-hot encoding 做predict的话会产生非常稀疏的矩阵,浪费算力,计算速度慢

因此引入embedding_lookup,代码见embed_bigram_lstm.py

Drop out

Seq2Seq

def create_model(sess, forward_only):
    model = seq2seq_model.Seq2SeqModel(source_vocab_size=vocabulary_size,
                                       target_vocab_size=vocabulary_size,
                                       buckets=[(20, 21)],
                                       size=256,
                                       num_layers=4,
                                       max_gradient_norm=5.0,
                                       batch_size=batch_size,
                                       learning_rate=1.0,
                                       learning_rate_decay_factor=0.9,
                                       use_lstm=True,
                                       forward_only=forward_only)
    return model

参考链接

觉得我的文章对您有帮助的话,不妨点个star

上一篇下一篇

猜你喜欢

热点阅读