JVAV集合框架
一、Java集合框架分类
1、Set:无序,不可重复;
2、List:有序,可重复;
3、Queue:队列集合;
4、Map:映射关系;
1、Java集合和数组区别
- 数组长度在初始化时指定;集合可以保存不确定的数据;
- 数组元素可以时基本类型和对象;集合只能保存对象(实际是引用);
2、Java集合继承关系
Java集合类主要由两个接口派生:Collection和Map
Collection Map3、Collection接口
1. 接口定义:
public interface Collection<E> extends Iterable<E> {
int size();
boolean isEmpty();
boolean contains(Object o);
Iterator<E> iterator();
Object[] toArray();
<T> T[] toArray(T[] a);
boolean add(E e);
boolean remove(Object o);
boolean containsAll(Collection<?> c);
boolean addAll(Collection<? extends E> c);
boolean removeAll(Collection<?> c);
default boolean removeIf(Predicate<? super E> filter) {
Objects.requireNonNull(filter);
boolean removed = false;
final Iterator<E> each = iterator();
while (each.hasNext()) {
if (filter.test(each.next())) {
each.remove();
removed = true;
}
}
return removed;
}
boolean retainAll(Collection<?> c);
void clear();
boolean equals(Object o);
int hashCode();
@Override
default Spliterator<E> spliterator() {
return Spliterators.spliterator(this, 0);
}
default Stream<E> stream() {
return StreamSupport.stream(spliterator(), false);
}
default Stream<E> parallelStream() {
return StreamSupport.stream(spliterator(), true);
}
}
Iterable接口可迭代的,它是Collection的父接口,它的方法iterator()返回Iterator被称为迭代器,主要用于遍历集合中的元素;
2. Set
Set即Collection,唯一区别Set不能有重复元素;
3. List
List增加根据索引获取元素的方法;
4. Queue
队列先进先出的容器;
public interface Queue<E> extends Collection<E> {
boolean add(E var1);
E element();
boolean offer(E var1);
E remove();
E poll();
E peek();
}
4、Map接口
Map保存具有映射关系的数据;key不同,value可相同;
Map的key组成了Set集合;
Map的value组成了List集合;
注意:
List遍历删除元素需要使用iterator,用for循环调用list.remove方法导致索引也在变化,删除会报错
Iterator<String> it = list.iterator();
while(it.hasNext()){
String x = it.next();
if(x.equals("del")){
it.remove();
}
}
二、ArrayList
- 数组实现;
- 有容量限制,默认为10,超出限制会增加50%容量,通过System.arraycopy()复制到新的数组;自动扩容;
- 优势:末尾增加和查找性能高;
- 劣势:插入和删除性能低;
三、LinkedList
- 双向链表实现;
- 无容量限制;
- 优势:插入删除性能高;
- 劣势:查找性能低;
四、HashMap
- Hash表、链表、红黑树实现;
- 允许null键/值
- 非同步
- 不保证有序
三个重要的参数:
1、容量Capacity,默认16
Capacity就是bucket(桶)的大小;
2、负载因子Load factor,默认0.75
Load factor就是bucket(桶)填满程度的最大比例;
如果bucket中entries数目大于Capacity * Load factor,将会调整bucket大小为当前两倍;
3、TREEIFY_THRESHOLD,默认为8
使用树而不是列表的 bin 计数阈值;大于 2 并且应至少为 8 以符合假设;
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
static final int MAXIMUM_CAPACITY = 1 << 30;
static final float DEFAULT_LOAD_FACTOR = 0.75f;
static final int TREEIFY_THRESHOLD = 8;
1、put函数的实现
- 对key的hashCode()做hash,然后再计算index;
- 如果没碰撞直接放到bucket里;
- 如果碰撞了,以链表的形式存在buckets后;
- 如果碰撞导致链表过长(大于等于 TREEIFY_THRESHOLD),就把链表转换成红黑树;
- 如果节点已经存在就替换old value (保证key的唯一性)
- 如果bucket满了(超过 load factor*current capacity ),就要resize。
具体代码的实现如下:
public V put(K key, V value) {
//对key的hashcode做hash值
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//tab为空则创建
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//计算index,并对null处理
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//节点存在
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//该链为树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//该链为链表
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//写入
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//超过则扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
2、get函数的实现
- bucket里的第一个节点,直接命中;
- 如果有冲突,则通过key.equals(k)去查找对应的entry
若为树,则在树中通过key.equals(k)查找,O(logn);
若为链表,则在链表中通过key.equals(k)查找,O(n)。
具体代码的实现如下:
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//直接命中
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
//未命中
if ((e = first.next) != null) {
//在树中
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
3、hash函数的实现
将key的hashcode高16位和低16位异或
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
在计算下标时,table长度为n的2次幂,将获取的hash值与n-1进行与运算
tab[(n - 1) & hash]
如果没有高16位和低16位异或运算,很容易冲突;
4、resize函数的实现
因为是2次幂的扩展,所以元素的位置要么是原位置,要么是在原位置再移动2次幂的位置;因此,我们在扩充HashMap的时候,不需要重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是O的话索引没变,是1的话索引变成“原索引+oldCap”。
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
五、TreeMap
- 红黑树实现
- 保证数据有序(按Key排序)
- 中序遍历LDR
1、put函数的实现
public V put(K key, V value) {
TreeMapEntry<K,V> t = root;
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new TreeMapEntry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
TreeMapEntry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
if (cpr != null) {
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
TreeMapEntry<K,V> e = new TreeMapEntry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
2、get函数的实现
public V get(Object key) {
TreeMapEntry<K,V> p = getEntry(key);
return (p==null ? null : p.value);
}
final TreeMapEntry<K,V> getEntry(Object key) {
// Offload comparator-based version for sake of performance
if (comparator != null)
return getEntryUsingComparator(key);
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
TreeMapEntry<K,V> p = root;
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
return null;
}
3、successor函数的实现
查找后继
static <K,V> TreeMapEntry<K,V> successor(TreeMapEntry<K,V> t) {
if (t == null)
return null;
else if (t.right != null) {
TreeMapEntry<K,V> p = t.right;
while (p.left != null)
p = p.left;
return p;
} else {
TreeMapEntry<K,V> p = t.parent;
TreeMapEntry<K,V> ch = t;
while (p != null && ch == p.right) {
ch = p;
p = p.parent;
}
return p;
}
}
3、predecessor函数的实现
查找前继
static <K,V> TreeMapEntry<K,V> predecessor(TreeMapEntry<K,V> t) {
if (t == null)
return null;
else if (t.left != null) {
TreeMapEntry<K,V> p = t.left;
while (p.right != null)
p = p.right;
return p;
} else {
TreeMapEntry<K,V> p = t.parent;
TreeMapEntry<K,V> ch = t;
while (p != null && ch == p.left) {
ch = p;
p = p.parent;
}
return p;
}
}
六、LinkedHashMap
- Hash表和双向链表实现
- 双向链表保证迭代顺序是默认是插入顺序
1、重要参数
此链接哈希映射的迭代排序方法:
true :用于访问顺序,
false: 用于插入顺序
final boolean accessOrder;
2、三个重要方法
afterNodeAccess:节点访问后;put之后,更新列表,把最近访问的放到最后;
afterNodeInsertion:节点插入后;如果溢出了,移除第一个;
afterNodeRemoval:节点移除后;将节点从双向链表中删除;
这三个函数保证双向链表次序;保证节点顺序从年老到年轻;
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMapEntry<K,V> last;
if (accessOrder && (last = tail) != e) {
LinkedHashMapEntry<K,V> p =
(LinkedHashMapEntry<K,V>)e, b = p.before, a = p.after;
p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a != null)
a.before = b;
else
last = b;
if (last == null)
head = p;
else {
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMapEntry<K,V> first;
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}
void afterNodeRemoval(Node<K,V> e) { // unlink
LinkedHashMapEntry<K,V> p =
(LinkedHashMapEntry<K,V>)e, b = p.before, a = p.after;
p.before = p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a == null)
tail = b;
else
a.before = b;
}
2、get方法
如果是accessOrder = true :用于访问顺序,更新列表顺序;
public V get(Object key) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return null;
if (accessOrder)
afterNodeAccess(e);
return e.value;
}