2.多线程线程安全

2020-09-04  本文已影响0人  okhoogh

什么是线程安全?

为什么有线程安全问题?

当多个线程同时共享,同一个全局变量或静态变量,做写的操作时,可能会发生数据冲突问题,也就是线程安全问题。但是做读操作是不会发生数据冲突问题。

案例:现在有100张火车票,有两个窗口同时抢火车票,请使用多线程模拟抢票。
class ThreadTrain1 implements Runnable {
    private int count = 100;
    private static Object oj = new Object();

    @Override
    public void run() {
        while (count > 0) {
            try {
                Thread.sleep(50);
            } catch (Exception e) {
                // TODO: handle exception
            }
            sale();
        }
    }

    public void sale() {
        // 前提 多线程进行使用、多个线程只能拿到一把锁。
        // 保证只能让一个线程 在执行 缺点效率降低
        // synchronized (oj) {
//      if (count > 0) {
        System.out.println(Thread.currentThread().getName() + ",出售第" + (100 - count + 1) + "票");
        count--;
//      }
        // }
    }
}

public class ThreadDemo {
    public static void main(String[] args) {
        ThreadTrain1 threadTrain1 = new ThreadTrain1();
        Thread t1 = new Thread(threadTrain1, "①号窗口");
        Thread t2 = new Thread(threadTrain1, "②号窗口");
        t1.start();
        t2.start();
    }
}
运行结果:

一号窗口和二号窗口同时出售火车第一张和第七张,部分火车票会重复出售。
结论发现,多个线程共享同一个全局成员变量时,做写的操作可能会发生数据冲突问题。

线程安全解决办法

问:如何解决多线程之间线程安全问题?
答:使用多线程之间同步synchronized或使用锁(lock)。


问:为什么使用线程同步或使用锁能解决线程安全问题呢?
答:将可能会发生数据冲突问题(线程不安全问题),只能让当前一个线程进行执行。代码执行完成后释放锁,让后才能让其他线程进行执行。这样的话就可以解决线程不安全问题。


问:什么是多线程之间同步?
答:当多个线程共享同一个资源,不会受到其他线程的干扰。


同步代码块

什么是同步代码块?
答:代码块前加上 synchronized关键字的代码块.

synchronized(同一个数据) {
 可能会发生线程冲突问题
}

//这个对象可以为任意对象 
synchronized(对象) { 
    需要被同步的代码 
} 

好处:解决了多线程的安全问题
弊端:多个线程需要判断锁,较为消耗资源、抢锁的资源。

代码样例:
private static Object oj = new Object();
public void sale() {
    // 前提 多线程进行使用、多个线程只能拿到一把锁。
    // 保证只能让一个线程 在执行 缺点效率降低
    synchronized (oj) {
        if (count > 0) {
            System.out.println(Thread.currentThread().getName() 
                                + ",出售第" + (100 - count + 1) + "票");
            count--;
        }
    }
}

同步函数

什么是同步函数?
答:在方法上修饰synchronized称为同步函数

代码样例:
public synchronized void sale() {
    if (trainCount > 0) {
        try {
            Thread.sleep(40);
        } catch (Exception e) {
        }
        System.out.println(Thread.currentThread().getName() 
                                        + ",出售 第" + (100 - trainCount + 1) + "张票.");
        trainCount--;
    }
}

同步函数用的是什么锁?
答:同步函数使用this锁
证明方式: 一个线程使用同步代码块(this明锁),另一个线程使用同步函数。如果两个线程抢票不能实现同步,那么会出现数据错误。

class ThreadTrain2 implements Runnable {
    private int count = 100;
    public boolean flag = true;
    private static Object oj = new Object();

    @Override
    public void run() {
        if (flag) {
            while (count > 0) {
                synchronized (this) {
                    if (count > 0) {
                        try {
                            Thread.sleep(50);
                        } catch (Exception e) {
                            // TODO: handle exception
                        }
                        System.out.println(Thread.currentThread().getName() + ",出售第" + (100 - count + 1) + "票");
                        count--;
                    }
                }
            }
        } else {
            while (count > 0) {
                sale();
            }
        }
    }

    public synchronized void sale() {
        // 前提 多线程进行使用、多个线程只能拿到一把锁。
        // 保证只能让一个线程 在执行 缺点效率降低
        // synchronized (oj) {
        if (count > 0) {
            try {
                Thread.sleep(50);
            } catch (Exception e) {
                // TODO: handle exception
            }
            System.out.println(Thread.currentThread().getName() + ",出售第" + (100 - count + 1) + "票");
            count--;
        }
        // }
    }
}

public class ThreadDemo2 {
    public static void main(String[] args) throws InterruptedException {
        ThreadTrain2 threadTrain1 = new ThreadTrain2();
        Thread t1 = new Thread(threadTrain1, "①号窗口");
        Thread t2 = new Thread(threadTrain1, "②号窗口");
        t1.start();
        Thread.sleep(40);
        threadTrain1.flag = false;
        t2.start();
    }
}

静态同步函数

什么是静态同步函数?
答:方法上加上static关键字,使用synchronized 关键字修饰 或者使用类.class文件。
静态的同步函数使用的锁是 该函数所属字节码文件对象
可以用 getClass方法获取,也可以用当前 类名.class 表示。

代码样例:
synchronized(ThreadTrain.class) {
    System.out.println(Thread.currentThread().getName() + ",出售 第" + (100 - trainCount + 1) + "张票.");
    trainCount--;
    try {
        Thread.sleep(100);
    } catch (Exception e) {
    }
}
总结:

synchronized 修饰方法使用锁是当前this锁。
synchronized 修饰静态方法使用锁是当前类的字节码文件对象。

多线程死锁

什么是多线程死锁?
答:同步中嵌套同步,导致锁无法释放。

class ThreadTrain6 implements Runnable {
    // 这是货票总票数,多个线程会同时共享资源
    private int trainCount = 100;
    public boolean flag = true;
    private Object mutex = new Object();

    @Override
    public void run() {
        if (flag) {
            while (true) {
                synchronized (mutex) {
                    // 锁(同步代码块)在什么时候释放? 代码执行完, 自动释放锁.
                    // 如果flag为true 先拿到 obj锁,在拿到this 锁、 才能执行。
                    // 如果flag为false先拿到this,在拿到obj锁,才能执行。
                    // 死锁解决办法:不要在同步中嵌套同步。
                    sale();
                }
            }
        } else {
            while (true) {
                sale();
            }
        }
    }
    
    public synchronized void sale() {
        synchronized (mutex) {
            if (trainCount > 0) {
                try {
                    Thread.sleep(40);
                } catch (Exception e) {

                }
                System.out.println(Thread.currentThread().getName() 
                                        + ",出售 第" + (100 - trainCount + 1) + "张票.");
                trainCount--;
            }
        }
    }
}

public class DeadlockThread {

    public static void main(String[] args) throws InterruptedException {

        ThreadTrain6 threadTrain = new ThreadTrain6(); // 定义 一个实例
        Thread thread1 = new Thread(threadTrain, "一号窗口");
        Thread thread2 = new Thread(threadTrain, "二号窗口");
        thread1.start();
        Thread.sleep(40);
        threadTrain.flag = false;
        thread2.start();
    }
}

多线程有三大特性

原子性、可见性、有序性

什么是原子性

即一个操作或者多个操作要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。

什么是可见性

什么是有序性

int a = 10; //语句1
int r = 2; //语句2
a = a + 3; //语句3
r = a*a; //语句4

Java内存模型

共享内存模型指的就是Java内存模型(简称JMM),JMM决定一个线程对共享变量的写入时,能对另一个线程可见。从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读/写共享变量的副本。本地内存是JMM的一个抽象概念,并不真实存在。它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化。

从上图来看,线程A与线程B之间如要通信的话,必须要经历下面2个步骤:

  1. 首先,线程A把本地内存A中更新过的共享变量刷新到主内存中去。
  2. 然后,线程B到主内存中去读取线程A之前已更新过的共享变量。
下面通过示意图来说明这两个步骤:

总结:什么是Java内存模型:java内存模型简称jmm,定义了一个线程对另一个线程可见。共享变量存放在主内存中,每个线程都有自己的本地内存,当多个线程同时访问一个数据的时候,可能本地内存没有及时刷新到主内存,所以就会发生线程安全问题。

Volatile

什么是Volatile?

Volatile 关键字的作用是变量在多个线程之间可见。

class ThreadVolatileDemo extends Thread {
    public boolean flag = true;

    @Override
    public void run() {
        System.out.println("开始执行子线程....");
        while (flag) {
        }
        System.out.println("线程停止");
    }

    public void setRuning(boolean flag) {
        this.flag = flag;
    }
}

public class ThreadVolatile {
    public static void main(String[] args) throws InterruptedException {
        ThreadVolatileDemo threadVolatileDemo = new ThreadVolatileDemo();
        threadVolatileDemo.start();
        Thread.sleep(3000);
        threadVolatileDemo.setRuning(false);
        System.out.println("flag 已经设置成false");
        Thread.sleep(1000);
        System.out.println(threadVolatileDemo.flag);
    }
}

原因:线程之间是不可见的,读取的是副本,没有及时读取到主内存结果。
解决办法使用Volatile关键字将解决线程之间可见性, 强制线程每次读取该值的时候都去“主内存”中取值

Volatile非原子性

注意: Volatile非原子性
public class VolatileNoAtomic extends Thread {
    private static volatile int count;

    // private static AtomicInteger count = new AtomicInteger(0);
    private static void addCount() {
        for (int i = 0; i < 1000; i++) {
            count++;
            // count.incrementAndGet();
        }
        System.out.println(count);
    }

    public void run() {
        addCount();
    }

    public static void main(String[] args) {

        VolatileNoAtomic[] arr = new VolatileNoAtomic[100];
        for (int i = 0; i < 10; i++) {
            arr[i] = new VolatileNoAtomic();
        }

        for (int i = 0; i < 10; i++) {
            arr[i].start();
        }
    }
}

结果发现:数据不同步,因为Volatile不用具备原子性。

使用AtomicInteger原子类

AtomicInteger是一个提供原子操作的Integer类,通过线程安全的方式操作加减。

public class VolatileNoAtomic extends Thread {
    static int count = 0;
    private static AtomicInteger atomicInteger = new AtomicInteger(0);

    @Override
    public void run() {
        for (int i = 0; i < 1000; i++) {
            //等同于i++
            atomicInteger.incrementAndGet();
        }
        System.out.println(count);
    }

    public static void main(String[] args) {
        // 初始化10个线程
        VolatileNoAtomic[] volatileNoAtomic = new VolatileNoAtomic[10];
        for (int i = 0; i < 10; i++) {
            // 创建
            volatileNoAtomic[i] = new VolatileNoAtomic();
        }
        for (int i = 0; i < volatileNoAtomic.length; i++) {
            volatileNoAtomic[i].start();
        }
    }
}

volatile与synchronized区别

仅靠volatile不能保证线程的安全性。(原子性)

线程安全性

ThreadLocal

什么是ThreadLocal

ThreadLocal提高一个线程的局部变量,访问某个线程拥有自己局部变量。
当使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。

ThreadLocal的接口方法

ThreadLocal类接口很简单,只有4个方法,我们先来了解一下:

案例:创建三个线程,每个线程生成自己独立序列号。
class Res {
    // 生成序列号共享变量
    public static Integer count = 0;
    public static ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>() {
        protected Integer initialValue() {

            return 0;
        };

    };

    public Integer getNum() {
        int count = threadLocal.get() + 1;
        threadLocal.set(count);
        return count;
    }
}

public class ThreadLocaDemo2 extends Thread {
    private Res res;

    public ThreadLocaDemo2(Res res) {
        this.res = res;
    }

    @Override
    public void run() {
        for (int i = 0; i < 3; i++) {
            System.out.println(Thread.currentThread().getName() + "---" + "i---" + i + "--num:" + res.getNum());
        }

    }

    public static void main(String[] args) {
        Res res = new Res();
        ThreadLocaDemo2 threadLocaDemo1 = new ThreadLocaDemo2(res);
        ThreadLocaDemo2 threadLocaDemo2 = new ThreadLocaDemo2(res);
        ThreadLocaDemo2 threadLocaDemo3 = new ThreadLocaDemo2(res);
        threadLocaDemo1.start();
        threadLocaDemo2.start();
        threadLocaDemo3.start();
    }
}

ThreadLocal实现原理

ThreadLocal通过map集合
Map.put(“当前线程”,值);

上一篇下一篇

猜你喜欢

热点阅读