Android消息机制源码分析

2018-10-09  本文已影响18人  沐小晨曦

前言

基于Android SDK 28。

使用方式

使用方式不必多说(仔细看看自己还是不是第一种LowB写法):

   //编译器已经明确提示这样写存在内存泄露
   @SuppressLint("HandlerLeak")
   private Handler mHandlerOld = new Handler() {
        @Override
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
        }
    };
    //推荐写法
    private Handler mHandler = new Handler(new Handler.Callback() {
        @Override
        public boolean handleMessage(Message message) {
            return false;
        }
    });

Handle源码分析

首先是Handle构造方法(以上面调用的构造方法为例):

    public Handler(Callback callback) {
        this(callback, false);
    }
    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) { //private static final boolean FIND_POTENTIAL_LEAKS = false;
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();    //拿当前线程的Looper构建消息循环系统
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

首先FIND_POTENTIAL_LEAKS是一个布尔常量,好像这个if判断就是个多余的代码块,不管它,继续往下看。

然后就是拿当前的线程的Looper,如果当前线程的Looper为空,就提示可能是没有调用Looper.prepare()。

    //获取当前线程的Looper
    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

这个ThreadLocal是一个抽象泛型类,就是用作线程隔离的,它可以在不同线程存储数据并且不同线程具有不同的数据副本。那么就可以肯定Looper.prepare()就存数据了:

    /** 
      *Initialize the current thread as a looper.
      */
    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            //一个线程只能存在一个Looper
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }
    //quitAllowed表示是否运行退出
    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

所以,new Handler之前必须要先初始化Looper,所以在子线程中实例Handler时:

        new Thread(new Runnable() {
            @Override
            public void run() {
                Looper.prepare();   //必须要初始化Looper
                Handler handler=new Handler(new Handler.Callback() {
                    @Override
                    public boolean handleMessage(Message msg) {
                        return false;
                    }
                });
            }
        }).start();

那么为什么我们可以在Activity里可以直接使用Handler呢?那是因为在ActivityThread的mian方法里面已经初始化Looper了:

    //ActivityThread.java
    public static void main(String[] args) {
        //....
        Looper.prepareMainLooper();
        //...
        Looper.loop();  //开启循环,后面会分析
    }
    /**
     * Looper.java
     * 应用程序主线程的Looper,在Android环境构建时就应该创建了
     * 所以无需自己调用,而且也不能在主线程调用Looper.prepare()
     */
    public static void prepareMainLooper() {
        prepare(false); //传入flase表示主线程循环队列是不允许中断退出的
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

Handler 发送消息的两种方式

第一种是post(Runnable)、postDelayed()等等:

    public final boolean post(Runnable r)
    {
       return  sendMessageDelayed(getPostMessage(r), 0);
    }

可以看到是调用的sendMessageDelayed方法,其实就是发送消息的第二种方式了,这里其实最关键的是在于getPostMessage()这个方法:

    private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }

其实就是把传入的runnable参数存入Message对象的callback成员变量。

第二种是sendMessage、sendMessageDelayed、sendEmptyMessage等等:

其内部都是调用sendMessageAtTime:

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }
    //将消息放入消息队列
    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;  //处理该消息的目标就是当前Handler
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

当然,三种释义是有区别的,sendMessage就是表示消息立即需要处理,而sendMessageDelayed用于发送相对于当前时间多久后需要处理的消息,sendMessageAtTime用于发送在指定的绝对时间上需要处理的消息。

Handler 处理消息

发现事情并不简单。

Handler 总结

Message 源码分析

public final class Message implements Parcelable {
    public int what;    //标示消息的唯一性
    /**
     * 传递的数据低成本替代品,如果要传递其他类型的数据或者多个数据,可以使用Bundle
     */
    public int arg1;
    public int arg2;
    
    /*package*/ long when;  //指定消息执行时间,如果为0表示立即执行
    
    /*package*/ Bundle data;    

    /*package*/ Handler target;     

    /*package*/ Runnable callback;

    // sometimes we store linked lists of these things
    /*package*/ Message next;   //以单链表形式存储
    
    public static final Object sPoolSync = new Object();    //实例化空的一个静态对象作消息的锁
    private static Message sPool;   //消息池
    private static int sPoolSize = 0;   

    private static final int MAX_POOL_SIZE = 50;
 }

虽然Message有一个公有的构造方法,但是还是推荐使用Message.obtain()实例化一个Message:

    /**
     * 从全局消息池中返回一个消息实例
     * 这样在大多数情况下能避免重新分配对象
     */
    public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }

该方法就是如果消息池有消息就取出消息池的头部返回,并把当前消息池头部指向下一条消息,然后消息池大小减一,如果消息池为空,就实例化一个消息并返回。

那么消息池是在哪赋值的呢?其实是在recycle()方法里:

    /**
     * 当一个消息正在使用时,是不能回收的
     */
    public void recycle() {
        if (isInUse()) {
            if (gCheckRecycle) {
                throw new IllegalStateException("This message cannot be recycled because it "
                        + "is still in use.");
            }
            return;
        }
        recycleUnchecked();
    }

    /**
     * 将废弃的消息投入消息池中重新利用,避免重新创建对象的开销
     */
    void recycleUnchecked() {
        // Mark the message as in use while it remains in the recycled object pool.
        // Clear out all other details.
        flags = FLAG_IN_USE;
        what = 0;
        arg1 = 0;
        arg2 = 0;
        obj = null;
        replyTo = null;
        sendingUid = -1;
        when = 0;
        target = null;
        callback = null;
        data = null;

        synchronized (sPoolSync) {
            if (sPoolSize < MAX_POOL_SIZE) {
                next = sPool;   //消息池头部的下一条消息指向为空
                sPool = this;   //把当前消息作为消息池头部
                sPoolSize++;
            }
        }
    }

可以看到,消息池是不可能为空的,里面缓存的都是空的Message对象。只需要调用recycle方法便可以把废弃消息放入消息池以便重新利用,放入消息池中的消息已经被清空所有数据,因此不能被立即使用,就需要调用obtain方法返回消息对象后重新初始化。

MessageQueue

消息队列。

在上面Handler.sendMessageAtTime时,就会调用MessageQueue.enqueueMessage方法:

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();  //回收消息
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;    //这时候已经把新消息放入消息队列头部了,如果线程阻塞,则需要唤醒线程
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {   //如果是异步消息,则不需要唤醒线程
                        needWake = false;
                    }
                }
                msg.next = p; //链表插入操作
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

通过Handler的sendXxx、postXxx方法都会把Message压入MessageQueue中,Message在消息队列中是按照消息执行时间(when)排列的,因此消息入队前对应以下四种处理情况:

将新消息加入消息队列只是enqueueMessage方法的第一步,如果新消息加入到消息队列头部,此时处理消息的线程处于block状态,则需要调用nativeWake方法唤醒消息处理线程。

Looper 源码分析

前面我们说在主线程是不需要调用Looper.prepare()方法即可使用Handler,那是因为在ActivityThread中的main方法中已经调用了Looper.prepareMainLooper(),这个方法我们已经分析过了,我们在分析随后调用的Looper.loop()方法。

在分析此方法之前,可以看到在Looper的源代码之前有注释:

  * <p>This is a typical example of the implementation of a Looper thread,
  * using the separation of {@link #prepare} and {@link #loop} to create an
  * initial Handler to communicate with the Looper.
  * //把一个普通线程变为Looper线程仅需两步
  * <pre>
  *  class LooperThread extends Thread {
  *      public Handler mHandler;
  *
  *      public void run() {
  *          Looper.prepare();  //第一步初始化Looper
  *
  *          mHandler = new Handler() {
  *              public void handleMessage(Message msg) {
  *                  // process incoming messages here
  *              }
  *          };
  *
  *          Looper.loop(); //第二步开启循环
  *      }
  *  }</pre>

所以,我们在对照ActivityThread,其实就是把主线程变为一个Looper线程,下面看Looper.loop()方法到底做了什么事情:

    /**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;
        //...
        for (;;) {  //无限轮询消息队列取出消息
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                // 没有消息时,表明消息队列已经停止了,那什么时候主线程的消息队列会退出呢?
                // 那只有应用程序退出时,主线程的消息队列才会停止
                // 在Android中,一切皆为消息,包括触摸事件、视图绘制、显示、刷新都是消息
                // 所以在正常情况下,主线程的消息队列很难没有消息
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
            //...
            try {
                msg.target.dispatchMessage(msg);    //mag.target = handler 分发消息
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            //...
            msg.recycleUnchecked(); //回收消息
        }
    }

所以Looper.loop方法中做了三件事:

MessageQueue.next()方法:

    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        //未到下一条消息的执行时间,设置等待时间
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.获取一条消息,并标示目前非阻塞
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();    //标记正在使用
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

妈耶,有点懵。

总结

  1. 使用Handler时推荐在其构造方法中传入一个callback,更要注意如果在子线程中使用,一定要初始化Looper。
  2. 一个线程只能有一个Looper,Looper是存在于ThreadLocal中,Looper中维护着一个MessageQueue,主线程已经初始化Looper了(Looper.prepareMainLooper()),然后通过Looper.loop轮询消息队列取出消息
  3. 我们通过Handler的postXxx和sendMessageXxx方法发送消息,其内部都是调用Handler.sendMessageAtTime(Message msg , long uptimeMillis)方法,在该方法内会调用MessageQueue.enqueueMessage(Message msg, long when)把消息放入消息队列,根据when的大小决定把新加入的消息插入到头部还是插入其中,如果新加入的消息被插入头部且该线程已经blocked,还需要唤醒该线程
  4. 获取一个Message推荐使用Message.obtain()方法获取,Message中维护一个消息池,里面缓存的都是空的Message对象。只需要调用recycle方法便可以把废弃消息放入消息池以便重新利用,放入消息池中的消息已经被清空所有数据,因此不能被立即使用,就需要调用obtain方法返回消息对象后重新初始化。
  5. 调用MessageQueue.next()方法可能会阻塞,即使消息队列中没有消息了,Looper也不会退出而是等待。当消息队列中没有消息时,表明消息队列已经停止了,这种情况只能是应用程序退出了。

后记

其实还有一些东西没分析到,特别是MessageQueue,涉及的Native方法太多了。Mark下!

上一篇 下一篇

猜你喜欢

热点阅读