算法专家

红黑树详解(Java)

2018-03-20  本文已影响135人  dreamsfuture

转自https://www.jianshu.com/p/4cd37000f4e3

1.定义

红黑树是特殊的二叉查找树,又名R-B树(RED-BLACK-TREE),由于红黑树是特殊的二叉查找树,即红黑树具有了二叉查找树的特性,而且红黑树还具有以下特性:

有几点需要注意的是:

1.特性3中指定红黑树的每个叶子节点都是空节点,但是在Java实现中红黑树将使用null代表空节点,因此遍历红黑树时看不到黑色的叶子节点,反而见到的叶子节点是红色的

2.特性4保证了从根节点到叶子节点的最长路径的长度不会超过任何其他路径的两倍,例如黑色高度为3的红黑树,其最短路径(路径指的是根节点到叶子节点)是2(黑节点-黑节点-黑节点),其最长路径为4(黑节点-红节点-黑节点-红节点-黑节点)。

2.实践

2.1 红黑树操作

添加[1]

将一个节点插入到红黑树中,需要执行哪些步骤呢?首先,将红黑树当作一颗二叉查找树,将节点插入;然后,将节点着色为红色;最后,通过旋转和重新着色等方法来修正该树,使之重新成为一颗红黑树。详细描述如下:

第一步: 将红黑树当作一颗二叉查找树,将节点插入。
红黑树本身就是一颗二叉查找树,将节点插入后,该树仍然是一颗二叉查找树。也就意味着,树的键值仍然是有序的。此外,无论是左旋还是右旋,若旋转之前这棵树是二叉查找树,旋转之后它一定还是二叉查找树。这也就意味着,任何的旋转和重新着色操作,都不会改变它仍然是一颗二叉查找树的事实。
好吧?那接下来,我们就来想方设法的旋转以及重新着色,使这颗树重新成为红黑树!

第二步:将插入的节点着色为"红色"。
为什么着色成红色,而不是黑色呢?为什么呢?在回答之前,我们需要重新温习一下红黑树的特性:
(1) 每个节点或者是黑色,或者是红色。
(2) 根节点是黑色。
(3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!]
(4) 如果一个节点是红色的,则它的子节点必须是黑色的。
(5) 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
将插入的节点着色为红色,不会违背"特性(5)"!因为插入红色节点,原来是红黑树的祖先节点经过本节点的路径具有相同数目的黑节点,增加红色不增加黑色,这就少违背一条特性,意味着我们需要处理的情况越少。接下来,就要努力的让这棵树满足其它性质即可;满足了的话,它就又是一颗红黑树了。

第三步: 通过一系列的旋转或着色等操作,使之重新成为一颗红黑树。
第二步中,将插入节点着色为"红色"之后,不会违背"特性(5)"。那它到底会违背哪些特性呢?
对于"特性(1)",显然不会违背了。因为我们已经将它涂成红色了。
对于"特性(2)",显然也不会违背。在第一步中,我们是将红黑树当作二叉查找树,然后执行的插入操作。而根据二叉查找数的特点,插入操作不会改变根节点。所以,根节点仍然是黑色。
对于"特性(3)",显然不会违背了。这里的叶子节点是指的空叶子节点,插入非空节点并不会对它们造成影响。
对于"特性(4)",是有可能违背的!
那接下来,想办法使之"满足特性(4)",就可以将树重新构造成红黑树了。

下面看看代码到底是怎样实现这三步的。

2.1.1 插入操作

首先红黑树在插入节点的时,我们设定插入节点的颜色为红色,如果插入的是黑色节点,必然会违背特性5,即改变了红黑树的黑高度,如下插入红色结点又存在着几种情况:

1.黑父

如图所示,这种情况不会破坏红黑树的特性,即不需要任何处理

黑父节点

2.红父

当其父亲为红色时又会存在以下的情况

红叔的情况,其实相对来说比较简单的,如下图所示,只需要通过修改父、叔的颜色为黑色,祖的颜色为红色,而且回去递归的检查祖节点即可

红左父和红右叔,自己为红左节点

黑叔的情况有如下几种,这几种情况下是不能够通过修改颜色达到平衡的效果,因此会通过旋转的操作,红黑树种有两种旋转操作,左旋和右旋(现在存在的疑问,什么时候使用到左旋,什么时候使用到右旋)

祖父为黑,父为左红,叔为右黑,自己为左红节点 黑祖父,左红父,右黑叔,自己为红右节点 黑祖父,黑左叔,红右父,自己为右红节点 黑祖父,黑左叔,红右父,自己为左红节点

以上就是红黑树新增节点所有可能的操作,下面会介绍红黑树中的删除操作

2.1.2 删除操作

删除操作相比于插入操作情况更加复杂,删除一个节点可以大致分为三种情况:

在讲述修复操作之前,首先需要明白几点,

1.对于红黑树而言,单支节点的情况只有如下图所示的一种情况,即为当前节点为黑色,其孩子节点为红色,(1.假设当前节点为红色,其两个孩子节点必须为黑色,2.若有孙子节点,则必为黑色,导致黑子数量不等,而红黑树不平衡)

黑父,自己为红左节点

2.由于红黑树是特殊的二叉查找树,它的删除和二叉查找树类型,真正的删除点即为删除点A的中序遍历的后继(前继也可以),通过红黑树的特性可知这个后继必然最多只能有一个孩子,其这个孩子节点必然是右孩子节点,从而为单支情况(即这个后继节点只能有一个红色孩子或没有孩子)

下面将详细介绍,在执行删除节点操作之后,将通过修复操作使得红黑树达到平衡的情况。

黑父,左红节点 黑父,左删黑节点,右红新节点 黑父节点,新左黑节点,红兄右节点 黑父节点,红兄左子节点,新右黑节点
从图中可以看出,操作之后红黑树并未达到平衡状态,而是变成的**黑兄**的情况

*   Case 2:新节点的兄弟节点为**黑色**,此时可能有如下情况

    *   红父二黑侄:将父节点变成黑色,兄弟节点变成红色,新节点变成黑色即可,如下图所示
红父,新左黑节点,黑兄右节点 红父节点,黑兄左子节点,黑右节点
    *   黑父二黑侄:将父节点变成新节点的颜色,新节点变成黑色,兄弟节点染成红色,还需要继续以父节点为判定点继续判断,如下图所示
image.png image.png
    *   红侄:

    情况一:新节点在右子树,红侄在兄弟节点左子树,此时的操作为右旋,并将兄弟节点变为父亲的颜色,父亲节点变为黑色,侄节点变为黑色,如下图所示
image.png
    情况二:新节点在右子树,红侄在兄弟节点右子树,此时的操作为先左旋,后右旋并将侄节点变为父亲的颜色,父节点变为黑色,如下图所示
image.png
    情况三:新节点在左子树,红侄在兄弟节点左子树,此时的操作为先右旋在左旋并将侄节点变为父亲的颜色,父亲节点变为黑色,如下图所示
image.png
    情况四:新节点在右子树,红侄在兄弟节点右子树,此时的操作为左旋,并将兄弟节点变为父节点的颜色,父亲节点变为黑色,侄节点变为黑色,如下图所示
image.png

2.2 红黑树实现

如下是使用JAVA代码实现红黑树的过程,主要包括了插入、删除、左旋、右旋、遍历等操作

2.2.1 插入
/* 插入一个节点
 * @param node
 */
private void insert(RBTreeNode<T> node){
    int cmp;
    RBTreeNode<T> root = this.rootNode;
    RBTreeNode<T> parent = null;

    //定位节点添加到哪个父节点下
    while(null != root){
        parent = root;
        cmp = node.key.compareTo(root.key);
        if (cmp < 0){
            root = root.left;
        } else {
            root = root.right;
        }
    }

    node.parent = parent;
    //表示当前没一个节点,那么就当新增的节点为根节点
    if (null == parent){
        this.rootNode = node;
    } else {
        //找出在当前父节点下新增节点的位置
        cmp = node.key.compareTo(parent.key);
        if (cmp < 0){
            parent.left = node;
        } else {
            parent.right = node;
        }
    }

    //设置插入节点的颜色为红色
    node.color = COLOR_RED;

    //修正为红黑树
    insertFixUp(node);
}

/**
 * 红黑树插入修正
 * @param node
 */
private void insertFixUp(RBTreeNode<T> node){
    RBTreeNode<T> parent,gparent;
    //节点的父节点存在并且为红色
    while( ((parent = getParent(node)) != null) && isRed(parent)){
        gparent = getParent(parent);

        //如果其祖父节点是空怎么处理
        // 若父节点是祖父节点的左孩子
        if(parent == gparent.left){
            RBTreeNode<T> uncle = gparent.right;
            if ((null != uncle) && isRed(uncle)){
                setColorBlack(uncle);
                setColorBlack(parent);
                setColorRed(gparent);
                node = gparent;
                continue;
            }

            if (parent.right == node){
                RBTreeNode<T> tmp;
                leftRotate(parent);
                tmp = parent;
                parent = node;
                node = tmp;
            }

            setColorBlack(parent);
            setColorRed(gparent);
            rightRotate(gparent);
        } else {
            RBTreeNode<T> uncle = gparent.left;
            if ((null != uncle) && isRed(uncle)){
                setColorBlack(uncle);
                setColorBlack(parent);
                setColorRed(gparent);
                node = gparent;
                continue;
            }

            if (parent.left == node){
                RBTreeNode<T> tmp;
                rightRotate(parent);
                tmp = parent;
                parent = node;
                node = tmp;
            }

            setColorBlack(parent);
            setColorRed(gparent);
            leftRotate(gparent);
        }
    }
    setColorBlack(this.rootNode);
}

插入节点的操作主要分为以下几步:

2.2.2 删除节点

如下为删除节点的代码

private void remove(RBTreeNode<T> node){
    RBTreeNode<T> child,parent;
    boolean color;
    //被删除节点左右孩子都不为空的情况
    if ((null != node.left) && (null != node.right)){

        //获取到被删除节点的后继节点
        RBTreeNode<T> replace = node;

        replace = replace.right;
        while(null != replace.left){
            replace = replace.left;
        }

        //node节点不是根节点
        if (null != getParent(node)){
            //node是左节点
            if (getParent(node).left == node){
                getParent(node).left = replace;
            } else {
                getParent(node).right = replace;
            }
        } else {
            this.rootNode = replace;
        }

        child = replace.right;
        parent = getParent(replace);
        color = getColor(replace);

        if (parent == node){
            parent = replace;
        } else {
            if (null != child){
                setParent(child,parent);
            }
            parent.left = child;

            replace.right = node.right;
            setParent(node.right, replace);
        }

        replace.parent = node.parent;
        replace.color = node.color;
        replace.left = node.left;
        node.left.parent = replace;
        if (color == COLOR_BLACK){
            removeFixUp(child,parent);
        }

        node = null;
        return;
    }

    if (null != node.left){
        child = node.left;
    } else {
        child = node.right;
    }

    parent = node.parent;
    color = node.color;
    if (null != child){
        child.parent = parent;
    }

    if (null != parent){
        if (parent.left == node){
            parent.left = child;
        } else {
            parent.right = child;
        }
    } else {
        this.rootNode = child;
    }

    if (color == COLOR_BLACK){
        removeFixUp(child, parent);
    }
    node = null;
}

/**
 * 删除修复
 * @param node
 * @param parent
 */
private void removeFixUp(RBTreeNode<T> node, RBTreeNode<T> parent){
    RBTreeNode<T> other;
    //node不为空且为黑色,并且不为根节点
    while ((null == node || isBlack(node)) && (node != this.rootNode) ){
        //node是父节点的左孩子
        if (node == parent.left){
            //获取到其右孩子
            other = parent.right;
            //node节点的兄弟节点是红色
            if (isRed(other)){
                setColorBlack(other);
                setColorRed(parent);
                leftRotate(parent);
                other = parent.right;
            }

            //node节点的兄弟节点是黑色,且兄弟节点的两个孩子节点也是黑色
            if ((other.left == null || isBlack(other.left)) &&
                    (other.right == null || isBlack(other.right))){
                setColorRed(other);
                node = parent;
                parent = getParent(node);
            } else {
                //node节点的兄弟节点是黑色,且兄弟节点的右孩子是红色
                if (null == other.right || isBlack(other.right)){
                    setColorBlack(other.left);
                    setColorRed(other);
                    rightRotate(other);
                    other = parent.right;
                }
                //node节点的兄弟节点是黑色,且兄弟节点的右孩子是红色,左孩子是任意颜色
                setColor(other, getColor(parent));
                setColorBlack(parent);
                setColorBlack(other.right);
                leftRotate(parent);
                node = this.rootNode;
                break;
            }
        } else {
            other = parent.left;
            if (isRed(other)){
                setColorBlack(other);
                setColorRed(parent);
                rightRotate(parent);
                other = parent.left;
            }

            if ((null == other.left || isBlack(other.left)) &&
                    (null == other.right || isBlack(other.right))){
                setColorRed(other);
                node = parent;
                parent = getParent(node);
            } else {
                if (null == other.left || isBlack(other.left)){
                    setColorBlack(other.right);
                    setColorRed(other);
                    leftRotate(other);
                    other = parent.left;
                }

                setColor(other,getColor(parent));
                setColorBlack(parent);
                setColorBlack(other.left);
                rightRotate(parent);
                node = this.rootNode;
                break;
            }
        }
    }
    if (node!=null)
        setColorBlack(node);
}

删除节点主要分为几种情况去做对应的处理:

3.总结

以上主要介绍了红黑树的一些特性,包括一些操作详细的解析了里面的过程,写的时间比较长,感觉确实比较难理清楚。后面会持续的理解更深入,若有存在问题的地方,请指正,另红黑树实现代码
本人主要的参考链接如下:
[1] 红黑树(一)之 原理和算法详细介绍
1.红黑树(五)之 Java的实现
2.通过分析 JDK 源代码研究 TreeMap 红黑树算法实现
3.红黑树
4.(图解)红黑树的插入和删除
5.红黑树深入剖析及Java实现

上一篇下一篇

猜你喜欢

热点阅读