Paper| E2VPT: An Effective and

2023-10-15  本文已影响0人  与阳光共进早餐

1 intro

code: https://github.com/ChengHan111/E2VPT

three types of existing parameter-efficient learning methods:

  1. partial tuning: finetune part of the backbone e.g., the cls head or last layers

  2. extra module: insert learnable bias or additional adapters

  3. Prompt tuning: add prompt tokens but without changing or fine-tuning backbone

image.png

limitations of existing work:

1) 现有方法没有改变transformer最核心的key-value操作;

2) 现有方法还是不够极致节省计算量

2 this paper

main idea:
1) prompt:visual tokens, + add learnable tokens into key-value prompts

2) prune:redunce the number of learnable parameters by pruning unnecessary prompts

image.png

对比的baselines & exp

image.png
上一篇 下一篇

猜你喜欢

热点阅读