物体识别

图像识别之麻将识别源码( 一 )

2019-06-14  本文已影响0人  Softboys

object detection自定义物体识别之麻将识别( 一 )

未经过允许不得转载,转载请联系我,如何联系,点我头像。

连载已经完结,

百度网盘测试APP下载地址:

链接:https://pan.baidu.com/s/1grwUcLkI9i3OABsLtB5h3Q 

提取码:pkbl 

先见效果图,另外我已经上传到了抖音视频,想看NB效果,可以点击链接直接观看:

http://v.douyin.com/roLnjL/ 

    本人从事机器学习有一些时间,感觉与一般做APP应用也没有啥差别,现在每天就是准备样本 ,调整参数,训练,验证结果。可能是我还没有达到哪些教授的水平能设计神经网络吧,感觉也就是一般马龙该做的杂七杂八事情。另外我更加关注移动设备AI的实现与效果,体验一样重要,识别的速度要快!

       接下来的博客开始记录我研究过程,过程是:采集样本->标注->训练->测试。

       先从准备样本开始。找一台高清拍照手机, 一张桌子, 一副麻将牌。刚好这些家里都有(* ̄︶ ̄)。

麻将一共27张不同的牌,先将麻将找出来。

      一般训练都需要图片,打算每张麻将拍摄100张左右,80张用于训练,20张用于测试。样本可能算少了一点,考虑到麻将背景单一,结构比较简单,根据我经验,这些样本应该算是一般够用的。

     拍摄图片拷贝到电脑,但是考虑到这些图片张数特别多100*27 = 2700张。这么多图片拷贝还是挺麻烦的,关键是图片还要按命名规范,重命名2700个图片就已经很累的,更别说去打标了。 由于这样,本人考虑可以拍摄视频,通过将视频裁剪出一张一张这样就简单多了,只用拍摄27个视频文件,只用重命名27个视频文件,通过python脚本将图片截出来,放到对应文件夹即可,既然会python,不得已才用人工啊 。

    拍摄视频技巧: 内心假设有一个半球透明遮罩盖在麻将上面,打开相机录像,验证遮罩上下左右四面八方来一遍,记得过程要缓慢,运动过快拍摄视频会比较模糊,后期图片也会比较模糊。

上图就是拍摄的视频文件,实际多一个麻将背景图视频。

接下来就要上python了,将视频截图保存到对应目录,并且按照一定的命名规范。如下图,

当然算法裁剪后的图还是需要简单人工挑选的,删掉没有麻将的图,删掉比较模糊的图。

现在开始上代码了,下一节将讲如何打标。

算法虽然简单,但是包含了命名规范,避免文件名相同覆盖,自己感觉还是很特意的。

for videodir in dirs:

    print('dealing {}'.format(videodir))

    videopath = os.path.join(VIDEO_PATH,videodir)

    cap = cv2.VideoCapture(videopath)

    videoname=os.path.splitext(videodir)[0]

    if videoname.find('_')>=0: 

        videoname=videoname.split('_')[0]

    print('videoname= {}'.format(videoname))

    imagepath_parrent = os.path.join(IMAGE_PATH,videoname)

    ret = cap.isOpened()

    if ret:

        if os.path.exists(imagepath_parrent)== False:

            os.mkdir(imagepath_parrent)

    imagepath =  os.path.join(imagepath_parrent,videoname)

    frame_num = 0

    frame_step = 0

    frame_success = 0

    while ret:

      ret,cameraImg = cap.read()

      frame_num+=1

      if frame_num%8==0:

          frame_success+=1

          frame_step=frame_step+1;

          cv2.imwrite(getImageFilePath(imagepath,frame_step), cameraImg)

    print('done {},total {}'.format(videodir,frame_success))

上一篇下一篇

猜你喜欢

热点阅读