iOS-底层原理:alloc & init & new 源码分析

2020-10-27  本文已影响0人  Miraclely

在分析alloc源码之前,先来看看一下3个变量 内存地址 和 指针地址 区别:

image

分别输出3个对象的内容、内存地址、指针地址,下图是打印结果

image

结论:通过上图可以看出,3个对象指向的是同一个内存空间,所以其内容内存地址相同的,但是对象的指针地址是不同的

%p -> &p1:是对象的指针地址,
%p -> p1: 是对象指针指向的的内存地址

这就是本文需要探索的内容,alloc做了什么?init做了什么?

准备工作

alloc 源码探索

alloc + init 整体源码的探索流程如下

image
//alloc源码分析-第一步
+ (id)alloc {
    return _objc_rootAlloc(self);
}

//alloc源码分析-第二步
id
_objc_rootAlloc(Class cls)
{
    return callAlloc(cls, false/*checkNil*/, true/*allocWithZone*/);
}

static ALWAYS_INLINE id
callAlloc(Class cls, bool checkNil, bool allocWithZone=false)// alloc 源码 第三步
{
#if __OBJC2__ //有可用的编译器优化
    /*
     参考链接:https://www.jianshu.com/p/536824702ab6
     */

    // checkNil 为false,!cls 也为false ,所以slowpath 为 false,假值判断不会走到if里面,即不会返回nil
    if (slowpath(checkNil && !cls)) return nil;

    //判断一个类是否有自定义的 +allocWithZone 实现,没有则走到if里面的实现
    if (fastpath(!cls->ISA()->hasCustomAWZ())) {
        return _objc_rootAllocWithZone(cls, nil);
    }
#endif

    // No shortcuts available. // 没有可用的编译器优化
    if (allocWithZone) {
        return ((id(*)(id, SEL, struct _NSZone *))objc_msgSend)(cls, @selector(allocWithZone:), nil);
    }
    return ((id(*)(id, SEL))objc_msgSend)(cls, @selector(alloc));
}

如上所示,在calloc方法中,当我们无法确定实现走到哪步时,可以通过断点调试,判断执行走哪部分逻辑。这里是执行到_objc_rootAllocWithZone

slowpath & fastpath

其中关于slowpathfastpath这里需要简要说明下,这两个都是objc源码中定义的,其定义如下

//x很可能为真, fastpath 可以简称为 真值判断
#define fastpath(x) (__builtin_expect(bool(x), 1)) 
//x很可能为假,slowpath 可以简称为 假值判断
#define slowpath(x) (__builtin_expect(bool(x), 0)) 

其中的__builtin_expect指令是由gcc引入的,
1、目的:编译器可以对代码进行优化,以减少指令跳转带来的性能下降。即性能优化
2、作用:允许程序员将最有可能执行的分支告诉编译器
3、指令的写法为:__builtin_expect(EXP, N)。表示 EXP==N的概率很大
4、fastpath定义中__builtin_expect((x),1)表示 x 的值为真的可能性更大;即 执行if 里面语句的机会更大
5、slowpath定义中的__builtin_expect((x),0)表示 x 的值为假的可能性更大。即执行 else 里面语句的机会更大
6、在日常的开发中,也可以通过设置来优化编译器,达到性能优化的目的,设置的路径为:Build Setting --> Optimization Level --> Debug --> 将None 改为 fastest 或者 smallest

cls->ISA()->hasCustomAWZ()

其中fastpath中的 cls->ISA()->hasCustomAWZ() 表示判断一个类是否有自定义的 +allocWithZone 实现,这里通过断点调试,是没有自定义的实现,所以会执行到 if 里面的代码,即走到_objc_rootAllocWithZone

id
_objc_rootAllocWithZone(Class cls, malloc_zone_t *zone __unused)// alloc 源码 第四步
{
    // allocWithZone under __OBJC2__ ignores the zone parameter
    //zone 参数不再使用 类创建实例内存空间
    return _class_createInstanceFromZone(cls, 0, nil,
                                         OBJECT_CONSTRUCT_CALL_BADALLOC);
}

static ALWAYS_INLINE id
_class_createInstanceFromZone(Class cls, size_t extraBytes, void *zone,
                              int construct_flags = OBJECT_CONSTRUCT_NONE,
                              bool cxxConstruct = true,
                              size_t *outAllocatedSize = nil)// alloc 源码 第五步
{
    ASSERT(cls->isRealized()); //检查是否已经实现

    // Read class's info bits all at once for performance
    //一次性读取类的位信息以提高性能
    bool hasCxxCtor = cxxConstruct && cls->hasCxxCtor();
    bool hasCxxDtor = cls->hasCxxDtor();
    bool fast = cls->canAllocNonpointer();
    size_t size;

    //计算需要开辟的内存大小,传入的extraBytes 为 0
    size = cls->instanceSize(extraBytes);
    if (outAllocatedSize) *outAllocatedSize = size;

    id obj;
    if (zone) {
        obj = (id)malloc_zone_calloc((malloc_zone_t *)zone, 1, size);
    } else {
        //申请内存
        obj = (id)calloc(1, size);
    }
    if (slowpath(!obj)) {
        if (construct_flags & OBJECT_CONSTRUCT_CALL_BADALLOC) {
            return _objc_callBadAllocHandler(cls);
        }
        return nil;
    }

    if (!zone && fast) {
        //将 cls类 与 obj指针(即isa) 关联
        obj->initInstanceIsa(cls, hasCxxDtor);
    } else {
        // Use raw pointer isa on the assumption that they might be
        // doing something weird with the zone or RR.
        obj->initIsa(cls);
    }

    if (fastpath(!hasCxxCtor)) {
        return obj;
    }

    construct_flags |= OBJECT_CONSTRUCT_FREE_ONFAILURE;
    return object_cxxConstructFromClass(obj, cls, construct_flags);
}

根据源码分析,得出其实现流程图如下所示:

image

alloc 核心操作

核心操作都位于calloc方法中

cls->instanceSize:计算所需内存大小

计算需要开辟内存的大小的执行流程如下所示

image
size_t instanceSize(size_t extraBytes) const {
    //编译器快速计算内存大小
    if (fastpath(cache.hasFastInstanceSize(extraBytes))) {
        return cache.fastInstanceSize(extraBytes);
    }

    // 计算类中所有属性的大小 + 额外的字节数0
    size_t size = alignedInstanceSize() + extraBytes;
    // CF requires all objects be at least 16 bytes.
    //如果size 小于 16,最小取16
    if (size < 16) size = 16;
    return size;
}

通过断点调试,会执行到cache.fastInstanceSize方法,快速计算内存大小

size_t fastInstanceSize(size_t extra) const
{
    ASSERT(hasFastInstanceSize(extra));

    //Gcc的内建函数 __builtin_constant_p 用于判断一个值是否为编译时常数,如果参数EXP 的值是常数,函数返回 1,否则返回 0
    if (__builtin_constant_p(extra) && extra == 0) {
        return _flags & FAST_CACHE_ALLOC_MASK16;
    } else {
        size_t size = _flags & FAST_CACHE_ALLOC_MASK;
        // remove the FAST_CACHE_ALLOC_DELTA16 that was added
        // by setFastInstanceSize
        //删除由setFastInstanceSize添加的FAST_CACHE_ALLOC_DELTA16 8个字节
        return align16(size + extra - FAST_CACHE_ALLOC_DELTA16);
    }
}

//16字节对齐算法
static inline size_t align16(size_t x) {
    return (x + size_t(15)) & ~size_t(15);
}

内存字节对齐原则

在解释为什么需要16字节对齐之前,首先需要了解内存字节对齐的原则,主要有以下三点

为什么需要16字节对齐

需要字节对齐的原因,有以下几点:

字节对齐-总结

下面以align(8) 为例,图解16字节对齐算法的计算过程,如下所示

image
calloc:申请内存,返回地址指针

通过instanceSize计算的内存大小,向内存中申请 大小 为 size的内存,并赋值给obj,因此 obj是指向内存地址的指针

obj = (id)calloc(1, size);

这里我们可以通过断点来印证上述的说法,在未执行calloc时,po objnil,执行后,再po obj法线,返回了一个16进制的地址

image

在平常的开发中,一般一个对象的打印的格式都是类似于这样的<LGPerson: 0x01111111f>(是一个指针)。为什么这里不是呢?

obj->initInstanceIsa:类与isa关联

经过calloc可知,内存已经申请好了,类也已经传入进来了,接下来就需要将 类与 地址指针 即isa指针进行关联,其关联的流程图如下所示

image

主要过程就是初始化一个isa指针,并将isa指针指向申请的内存地址,在将指针与cls类进行 关联

同样也可以通过断点调试来印证上面的说法,在执行完initInstanceIsa后,在通过po obj可以得出一个对象指针

image

总结

init 源码探索

alloc源码探索完了,接下来探索init源码,通过源码可知,inti的源码实现有以下两种

类方法 init

+ (id)init {
    return (id)self;
}

这里的init是一个构造方法 ,是通过工厂设计(工厂方法模式),主要是用于给用户提供构造方法入口。这里能使用id强转的原因,主要还是因为 内存字节对齐后,可以使用类型强转为你所需的类型

实例方法 init

LGPerson *objc = [[LGPerson alloc] init];

- (id)init {
    return _objc_rootInit(self);
}

id
_objc_rootInit(id obj)
{
    // In practice, it will be hard to rely on this function.
    // Many classes do not properly chain -init calls.
    return obj;
}

有上述代码可以,返回的是传入的self本身。

new 源码探索

一般在开发中,初始化除了init,还可以使用new,两者本质上并没有什么区别,以下是objc中new的源码实现,通过源码可以得知,new函数中直接调用了callAlloc函数(即alloc中分析的函数),且调用了init函数,所以可以得出new 其实就等价于 [alloc init]的结论

+ (id)new {
    return [callAlloc(self, false/*checkNil*/) init];
}

但是一般开发中并不建议使用new,主要是因为有时会重写init方法做一些自定义的操作,例如 initWithXXX,会在这个方法中调用[super init],用new初始化可能会无法走到自定义的initWithXXX部分。

例如,在CJLPerson中有两个初始化方法,一个是重写的父类的init,一个是自定义的initWithXXX方法,如下图所示

image

总结

注:可在github下载已经编译成功的objc-781源码

补充

【问题】为什么无法断点到obj->initInstanceIsa(cls, hasCxxDtor);

主要是因为断点断住的不是 自定义类的流程,而是系统级别的

image
上一篇下一篇

猜你喜欢

热点阅读