Flume部署及使用
Flume是一个分布式的、高可靠的、高可用的用于高效收集、聚合、移动大量日志数据的框架(Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data.),设计的目标就是高可靠性,扩展性,管理性,使用flume我们可以方便的把日志从源端(webserver等)收集到目的地(比如hdfs、kafka)。
-
与flume类似的框架包括:
Flume: Cloudera/Apache Java
Scribe: Facebook C/C++ 不再维护
Chukwa: Yahoo/Apache Java 不再维护
Kafka:apache,放在这里不是很合适,主要还是数据缓冲
Fluentd: Ruby
Logstash: ELK(ElasticSearch,Kibana)
需要重点关注的应该是Flume和Logstash,这两个业界用的比较广泛
-
架构及核心组件
Flume工作单元是Agent,每个Agent都包括Source(源端,用于数据收集)、Channel(聚集,用户数据缓存)、Sink(数据输出)3个核心组件
flume
-
Flume安装(版本为1.6.0)
- 前置条件
Java Runtime Environment - Java 1.7 or later(jdk1.7或以上)
Memory - Sufficient memory for configurations used by sources, channels or sinks(足够的机器内存)
Disk Space - Sufficient disk space for configurations used by channels or sinks(足够的磁盘空间)
Directory Permissions - Read/Write permissions for directories used by agent(目录权限,包括读写权限) - jdk安装
下载 jdk
解压到~/app
将java配置系统环境变量中: ~/.bash_profile
export JAVA_HOME=/home/hadoop/app/jdk1.8.0_144
export PATH=$JAVA_HOME/bin:$PATH
source下让其配置生效
检测: java -version - 安装Flume
下载 Flume
解压到~/app
将java配置系统环境变量中: ~/.bash_profile
export FLUME_HOME=/home/hadoop/app/apache-flume-1.6.0-cdh5.7.0-bin
export PATH=$FLUME_HOME/bin:$PATH
source下让其配置生效
flume-env.sh的配置:export JAVA_HOME=/home/hadoop/app/jdk1.8.0_144
检测: flume-ng version
-
Flume示例1(netcat source + memory channel + logger sink)
- 使用Flume的关键就是写配置文件,分别配置Source、Channel、Sink,然后把三者串联起来
比如这里写一个配置文件$FLUME_HOME/conf/example.conf,使用netcat source、memory channel、logger sink,example.conf内容如下:
a1.sources = r1
a1.sinks = k1
a1.channels = c1
a1.sources.r1.type = netcat
a1.sources.r1.bind = hadoop000
a1.sources.r1.port = 44444
a1.sinks.k1.type = logger
a1.channels.c1.type = memory
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
- 启动Agent:
flume-ng agent \
--name a1 \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/example.conf \
-Dflume.root.logger=INFO,console
- 启动telnet输入数据验证
telnet hadoop000 44444启动后输入内容123就可以在Flume看到如下数据:
Event: { headers:{} body: 31 32 33 0D 123. }
Event是FLume数据传输的基本单元
Event = 可选的header + byte array
-
Flume示例2(exec source + memory channel + logger sink)
- 创建exec-memory-logger.conf配置文件
内容如下:a1.sources = r1 a1.sinks = k1 a1.channels = c1 a1.sources.r1.type = exec a1.sources.r1.command = tail -F /home/hadoop/data/data.log a1.sources.r1.shell = /bin/sh -c a1.sinks.k1.type = logger a1.channels.c1.type = memory a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
- 启动Agent
flume-ng agent \
--name a1 \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/exec-memory-logger.conf \
-Dflume.root.logger=INFO,console
- 向/home/hadoop/data/data.log日志文件追加数据,验证
-
Flume示例3(两个Agent串起来)
对于这种情况:
AgentToAgent
如果webserver在一台服务器上产生日志,可以在改服务器上使用一个Agent Sink数据到另一台服务器的Source,然后采用logger sink输出到控制台,当然日志输出到控制台没啥用,最终应该输出到HDFS或者对接到kafka去处理数据,这里只是举例。
第一个Agent(exec source + memory channel + avro sink)
第二个Agent(avro source + memory channel + logger sink)
A.png
- 创建exec-memory-avro.conf和avro-memory-logger.conf配置文件
因为我手头没有两台机器,这里我只是在一台机器(hadoop000)上模拟两台机器的情况
exec-memory-avro.conf:
avro-memory-logger.confexec-memory-avro.sources = exec-source exec-memory-avro.sinks = avro-sink exec-memory-avro.channels = memory-channel exec-memory-avro.sources.exec-source.type = exec exec-memory-avro.sources.exec-source.command = tail -F /home/hadoop/data/data.log exec-memory-avro.sources.exec-source.shell = /bin/sh -c exec-memory-avro.sinks.avro-sink.type = avro exec-memory-avro.sinks.avro-sink.hostname = hadoop000 exec-memory-avro.sinks.avro-sink.port = 44444 exec-memory-avro.channels.memory-channel.type = memory exec-memory-avro.sources.exec-source.channels = memory-channel exec-memory-avro.sinks.avro-sink.channel = memory-channel
avro-memory-logger.sources = avro-source avro-memory-logger.sinks = logger-sink avro-memory-logger.channels = memory-channel avro-memory-logger.sources.avro-source.type = avro avro-memory-logger.sources.avro-source.bind = hadoop000 avro-memory-logger.sources.avro-source.port = 44444 avro-memory-logger.sinks.logger-sink.type = logger avro-memory-logger.channels.memory-channel.type = memory avro-memory-logger.sources.avro-source.channels = memory-channel avro-memory-logger.sinks.logger-sink.channel = memory-channel
- 启动Agent
先启动avro-memory-logger
然后启动exec-memory-avroflume-ng agent \ --name avro-memory-logger \ --conf $FLUME_HOME/conf \ --conf-file $FLUME_HOME/conf/avro-memory-logger.conf \ -Dflume.root.logger=INFO,console
flume-ng agent \ --name exec-memory-avro \ --conf $FLUME_HOME/conf \ --conf-file $FLUME_HOME/conf/exec-memory-avro.conf \ -Dflume.root.logger=INFO,console
- 向/home/hadoop/data/data.log日志文件追加数据,验证