我爱编程

MySQL 大表优化方案

2018-03-12  本文已影响0人  带娃儿先走

当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化。

单表优化

除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在 千万级以下,字符串为主的表在 五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量。

字段:


索引


查询SQL


引擎

目前广泛使用的是MyISAM和InnoDB两种引擎:

MyISAM:

MyISAM引擎是MySQL 5.1及之前版本的默认引擎,它的特点是:

InnoDB:

InnoDB在MySQL 5.5后成为默认索引,它的特点是:

总体来讲,MyISAM适合 SELECT密集型的表,而InnoDB适合 INSERT和 UPDATE密集型的表


系统调优参数

可以使用下面几个工具来做基准测试:

具体的调优参数内容较多,具体可参考官方文档,这里介绍一些比较重要的参数:


升级硬件

Scale up,这个不多说了,根据MySQL是CPU密集型还是I/O密集型,通过提升CPU和内存、使用SSD,都能显著提升MySQL性能


读写分离

也是目前常用的优化,从库读主库写,一般不要采用双主或多主引入很多复杂性,尽量采用文中的其他方案来提高性能。同时目前很多拆分的解决方案同时也兼顾考虑了读写分离


缓存

缓存可以发生在这些层次:

可以根据实际情况在一个层次或多个层次结合加入缓存。这里重点介绍下服务层的缓存实现,目前主要有两种方式:


表分区

MySQL在5.1版引入的分区是一种简单的水平拆分,用户需要在建表的时候加上分区参数,对应用是透明的无需修改代码

对用户来说,分区表是一个独立的逻辑表,但是底层由多个物理子表组成,实现分区的代码实际上是通过对一组底层表的对象封装,但对SQL层来说是一个完全封装底层的黑盒子。MySQL实现分区的方式也意味着索引也是按照分区的子表定义,没有全局索引。


image.png

用户的SQL语句是需要针对分区表做优化,SQL条件中要带上分区条件的列,从而使查询定位到少量的分区上,否则就会扫描全部分区,可以通过 EXPLAIN PARTITIONS来查看某条SQL语句会落在那些分区上,从而进行SQL优化,如下图5条记录落在两个分区上:


image.png
分区的好处是:
分区的限制和缺点:
分区的类型:
分区适合的场景有:

最适合的场景数据的时间序列性比较强,则可以按时间来分区,如下所示:


image.png

查询时加上时间范围条件效率会非常高,同时对于不需要的历史数据能很容的批量删除。

如果数据有明显的热点,而且除了这部分数据,其他数据很少被访问到,那么可以将热点数据单独放在一个分区,让这个分区的数据能够有机会都缓存在内存中,查询时只访问一个很小的分区表,能够有效使用索引和缓存

另外MySQL有一种早期的简单的分区实现 - 合并表(merge table),限制较多且缺乏优化,不建议使用,应该用新的分区机制来替代


垂直拆分

垂直分库是根据数据库里面的数据表的相关性进行拆分,比如:一个数据库里面既存在用户数据,又存在订单数据,那么垂直拆分可以把用户数据放到用户库、把订单数据放到订单库。垂直分表是对数据表进行垂直拆分的一种方式,常见的是把一个多字段的大表按常用字段和非常用字段进行拆分,每个表里面的数据记录数一般情况下是相同的,只是字段不一样,使用主键关联

比如原始的用户表是:


image.png

垂直拆分后是:


image.png
垂直拆分的优点是:

缺点是:


水平拆分

概述

水平拆分是通过某种策略将数据分片来存储,分库内分表和分库两部分,每片数据会分散到不同的MySQL表或库,达到分布式的效果,能够支持非常大的数据量。前面的表分区本质上也是一种特殊的库内分表

库内分表,仅仅是单纯的解决了单一表数据过大的问题,由于没有把表的数据分布到不同的机器上,因此对于减轻MySQL服务器的压力来说,并没有太大的作用,大家还是竞争同一个物理机上的IO、CPU、网络,这个就要通过分库来解决

前面垂直拆分的用户表如果进行水平拆分,结果是:


image.png

实际情况中往往会是垂直拆分和水平拆分的结合,即将 Users_A_M和 Users_N_Z再拆成 Users和 UserExtras,这样一共四张表

水平拆分的优点是:

缺点是:

分片原则

这里特别强调一下分片规则的选择问题,如果某个表的数据有明显的时间特征,比如订单、交易记录等,则他们通常比较合适用时间范围分片,因为具有时效性的数据,我们往往关注其近期的数据,查询条件中往往带有时间字段进行过滤,比较好的方案是,当前活跃的数据,采用跨度比较短的时间段进行分片,而历史性的数据,则采用比较长的跨度存储。

总体上来说,分片的选择是取决于最频繁的查询SQL的条件,因为不带任何Where语句的查询SQL,会遍历所有的分片,性能相对最差,因此这种SQL越多,对系统的影响越大,所以我们要尽量避免这种SQL的产生。


解决方案

由于水平拆分牵涉的逻辑比较复杂,当前也有了不少比较成熟的解决方案。这些方案分为两大类:客户端架构和代理架构。

客户端架构

通过修改数据访问层,如JDBC、Data Source、MyBatis,通过配置来管理多个数据源,直连数据库,并在模块内完成数据的分片整合,一般以Jar包的方式呈现

这是一个客户端架构的例子:


image.png

可以看到分片的实现是和应用服务器在一起的,通过修改Spring JDBC层来实现

客户端架构的优点是:

缺点是:

代理架构

通过独立的中间件来统一管理所有数据源和数据分片整合,后端数据库集群对前端应用程序透明,需要独立部署和运维代理组件

这是一个代理架构的例子:


image.png

代理组件为了分流和防止单点,一般以集群形式存在,同时可能需要Zookeeper之类的服务组件来管理

代理架构的优点是:

缺点是:

上一篇 下一篇

猜你喜欢

热点阅读