pandas Arithmetic methods with f

2018-12-04  本文已影响6人  闫_锋
In [165]: df1 = pd.DataFrame(np.arange(12.).reshape((3, 4)),
.....: columns=list('abcd'))

In [166]: df2 = pd.DataFrame(np.arange(20.).reshape((4, 5)),
.....: columns=list('abcde'))

In [167]: df2.loc[1, 'b'] = np.nan
In [168]: df1
Out[168]:
a b c d
0 0.0 1.0 2.0 3.0
1 4.0 5.0 6.0 7.0
2 8.0 9.0 10.0 11.0

In [169]: df2
Out[169]:
a b c d e
0 0.0 1.0 2.0 3.0 4.0
1 5.0 NaN 7.0 8.0 9.0
2 10.0 11.0 12.0 13.0 14.0
3 15.0 16.0 17.0 18.0 19.0
Adding these together results in NA values in the locations that don’t overlap:
In [170]: df1 + df2
Out[170]:
a b c d e
0 0.0 2.0 4.0 6.0 NaN
1 9.0 NaN 13.0 15.0 NaN
2 18.0 20.0 22.0 24.0 NaN
3 NaN NaN NaN NaN NaN
In [171]: df1.add(df2, fill_value=0)
Out[171]:
a b c d e
0 0.0 2.0 4.0 6.0 4.0
1 9.0 5.0 13.0 15.0 9.0
2 18.0 20.0 22.0 24.0 14.0
3 15.0 16.0 17.0 18.0 19.0

Operations between DataFrame and Series

In [175]: arr = np.arange(12.).reshape((3, 4))
In [176]: arr
Out[176]:
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]])
In [177]: arr[0]
Out[177]: array([ 0., 1., 2., 3.])
In [178]: arr - arr[0]
Out[178]:
array([[ 0., 0., 0., 0.],
[ 4., 4., 4., 4.],
[ 8., 8., 8., 8.]])
In [175]: arr = np.arange(12.).reshape((3, 4))
In [176]: arr
Out[176]:
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]])
In [177]: arr[0]
Out[177]: array([ 0., 1., 2., 3.])
In [178]: arr - arr[0]
Out[178]:
array([[ 0., 0., 0., 0.],
[ 4., 4., 4., 4.],
[ 8., 8., 8., 8.]])
In [179]: frame = pd.DataFrame(np.arange(12.).reshape((4, 3)),
.....: columns=list('bde'),
.....: index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [180]: series = frame.iloc[0]
In [181]: frame
Out[181]:
b d e
Utah 0.0 1.0 2.0
Ohio 3.0 4.0 5.0
Texas 6.0 7.0 8.0
Oregon 9.0 10.0 11.0
In [182]: series
Out[182]:
b 0.0
d 1.0
e 2.0
Name: Utah, dtype: float64

By default, arithmetic between DataFrame and Series matches the index of the Series
on the DataFrame’s columns, broadcasting down the rows:

In [183]: frame - series
Out[183]:
b d e
Utah 0.0 0.0 0.0
Ohio 3.0 3.0 3.0
Texas 6.0 6.0 6.0
Oregon 9.0 9.0 9.0

If you want to instead broadcast over the columns, matching on the rows, you have to
use one of the arithmetic methods. For example:

In [186]: series3 = frame['d']
In [187]: frame
Out[187]:
b d e
Utah 0.0 1.0 2.0
Ohio 3.0 4.0 5.0
Texas 6.0 7.0 8.0
Oregon 9.0 10.0 11.0

In [188]: series3
Out[188]:
Utah 1.0
Ohio 4.0
Texas 7.0
Oregon 10.0
Name: d, dtype: float64

In [189]: frame.sub(series3, axis='index')
Out[189]:
b d e
Utah -1.0 0.0 1.0
Ohio -1.0 0.0 1.0
Texas -1.0 0.0 1.0
Oregon -1.0 0.0 1.0
上一篇 下一篇

猜你喜欢

热点阅读