DES加解密

2018-03-27  本文已影响35人  春暖花已开

STEncryptorDES.h

#import <CommonCrypto/CommonCryptor.h>
#import <Foundation/Foundation.h>

#define FBENCRYPT_ALGORITHM     kCCAlgorithmDES
#define FBENCRYPT_BLOCK_SIZE    kCCBlockSizeDES
#define FBENCRYPT_KEY_SIZE      kCCKeySizeDES

@interface STEncryptorDES : NSObject 

//-----------------
// API (raw data)
//-----------------
+ (NSData*)generateIv;
+ (NSData*)encryptData:(NSData*)data key:(NSData*)key iv:(NSData*)iv;
+ (NSData*)decryptData:(NSData*)data key:(NSData*)key iv:(NSData*)iv;


//-----------------
// API (base64)
//-----------------
// the return value of encrypteMessage: and 'encryptedMessage' are encoded with base64.
//
+ (NSString*)encryptBase64String:(NSString*)string keyString:(NSString*)keyString separateLines:(BOOL)separateLines;
+ (NSString*)decryptBase64String:(NSString*)encryptedBase64String keyString:(NSString*)keyString;

//-----------------
// API (utilities)
//-----------------
+ (NSString*)hexStringForData:(NSData*)data;
+ (NSData*)dataForHexString:(NSString*)hexString;


@end

STEncryptorDES.m

#import "STEncryptorDES.h"
#import "NSData+Base64.h"

@implementation STEncryptorDES
#pragma mark -
#pragma mark Initialization and deallcation


#pragma mark -
#pragma mark Praivate


#pragma mark -
#pragma mark API

+ (NSData*)encryptData:(NSData*)data key:(NSData*)key iv:(NSData*)iv;
{
    NSData* result = nil;
    
    // setup key
    unsigned char cKey[FBENCRYPT_KEY_SIZE];
    bzero(cKey, sizeof(cKey));
    [key getBytes:cKey length:FBENCRYPT_KEY_SIZE];
    
    // setup iv
    char cIv[FBENCRYPT_BLOCK_SIZE];
    bzero(cIv, FBENCRYPT_BLOCK_SIZE);
    if (iv) {
        [iv getBytes:cIv length:FBENCRYPT_BLOCK_SIZE];
    }
    
    // setup output buffer
    size_t bufferSize = [data length] + FBENCRYPT_BLOCK_SIZE;
    void *buffer = malloc(bufferSize);
    
    // do encrypt
    size_t encryptedSize = 0;
    CCCryptorStatus cryptStatus = CCCrypt(kCCEncrypt,
                                          FBENCRYPT_ALGORITHM,
                                          kCCOptionPKCS7Padding,
                                          cKey,
                                          FBENCRYPT_KEY_SIZE,
                                          cIv,
                                          [data bytes],
                                          [data length],
                                          buffer,
                                          bufferSize,
                                          &encryptedSize);
    if (cryptStatus == kCCSuccess) {
        result = [NSData dataWithBytesNoCopy:buffer length:encryptedSize];
    } else {
        free(buffer);
        NSLog(@"[ERROR] failed to encrypt|CCCryptoStatus: %d", cryptStatus);
    }
    
    return result;
}

+ (NSData*)decryptData:(NSData*)data key:(NSData*)key iv:(NSData*)iv;
{
    NSData* result = nil;
    
    
    // setup key
    unsigned char cKey[FBENCRYPT_KEY_SIZE];
    bzero(cKey, sizeof(cKey));
    [key getBytes:cKey length:FBENCRYPT_KEY_SIZE];
    
    // setup iv
    char cIv[FBENCRYPT_BLOCK_SIZE];
    bzero(cIv, FBENCRYPT_BLOCK_SIZE);
    if (iv) {
        [iv getBytes:cIv length:FBENCRYPT_BLOCK_SIZE];
    }
    
    // setup output buffer
    size_t bufferSize = [data length] + FBENCRYPT_BLOCK_SIZE;
    void *buffer = malloc(bufferSize);
    
    // do decrypt
    size_t decryptedSize = 0;
    CCCryptorStatus cryptStatus = CCCrypt(kCCDecrypt,
                                          FBENCRYPT_ALGORITHM,
                                          kCCOptionPKCS7Padding,
                                          cKey,
                                          FBENCRYPT_KEY_SIZE,
                                          cIv,
                                          [data bytes],
                                          [data length],
                                          buffer,
                                          bufferSize,
                                          &decryptedSize);
    
    if (cryptStatus == kCCSuccess) {
        result = [NSData dataWithBytesNoCopy:buffer length:decryptedSize];
    } else {
        free(buffer);
        NSLog(@"[ERROR] failed to decrypt| CCCryptoStatus: %d", cryptStatus);
    }
    
    return result;
}


+ (NSString*)encryptBase64String:(NSString*)string keyString:(NSString*)keyString separateLines:(BOOL)separateLines
{
    NSData* data = [self encryptData:[string dataUsingEncoding:NSUTF8StringEncoding]
                                 key:[keyString dataUsingEncoding:NSUTF8StringEncoding]
                                  iv:nil];
    return [data base64EncodedStringWithSeparateLines:separateLines];
}

+ (NSString*)decryptBase64String:(NSString*)encryptedBase64String keyString:(NSString*)keyString
{
    NSData* encryptedData = [NSData dataFromBase64String:encryptedBase64String];
    NSData* data = [self decryptData:encryptedData
                                 key:[keyString dataUsingEncoding:NSUTF8StringEncoding]
                                  iv:nil];
    if (data) {
        return [[NSString alloc] initWithData:data
                                      encoding:NSUTF8StringEncoding];
    } else {
        return nil;
    }
}


#define FBENCRYPT_IV_HEX_LEGNTH (FBENCRYPT_BLOCK_SIZE*2)

+ (NSData*)generateIv
{
    static dispatch_once_t onceToken;
    dispatch_once(&onceToken, ^{
        srand(time(NULL));
    });
    
    char cIv[FBENCRYPT_BLOCK_SIZE];
    for (int i=0; i < FBENCRYPT_BLOCK_SIZE; i++) {
        cIv[i] = rand() % 256;
    }
    return [NSData dataWithBytes:cIv length:FBENCRYPT_BLOCK_SIZE];
}


+ (NSString*)hexStringForData:(NSData*)data
{
    if (data == nil) {
        return nil;
    }
    
    NSMutableString* hexString = [NSMutableString string];
    
    const unsigned char *p = [data bytes];
    
    for (int i=0; i < [data length]; i++) {
        [hexString appendFormat:@"%02x", *p++];
    }
    return hexString;
}

+ (NSData*)dataForHexString:(NSString*)hexString
{
    if (hexString == nil) {
        return nil;
    }
    
    const char* ch = [[hexString lowercaseString] cStringUsingEncoding:NSUTF8StringEncoding];
    NSMutableData* data = [NSMutableData data];
    while (*ch) {
        char byte = 0;
        if ('0' <= *ch && *ch <= '9') {
            byte = *ch - '0';
        } else if ('a' <= *ch && *ch <= 'f') {
            byte = *ch - 'a' + 10;
        }
        ch++;
        byte = byte << 4;
        if (*ch) {
            if ('0' <= *ch && *ch <= '9') {
                byte += *ch - '0';
            } else if ('a' <= *ch && *ch <= 'f') {
                byte += *ch - 'a' + 10;
            }
            ch++;
        }
        [data appendBytes:&byte length:1];
    }
    return data;
}

@end

NSData+Base64.h

#import <Foundation/Foundation.h>

void *NewBase64Decode(
    const char *inputBuffer,
    size_t length,
    size_t *outputLength);

char *NewBase64Encode(
    const void *inputBuffer,
    size_t length,
    bool separateLines,
    size_t *outputLength);

@interface NSData (Base64)

+ (NSData *)dataFromBase64String:(NSString *)aString;
- (NSString *)base64EncodedString;

// added by Hiroshi Hashiguchi
- (NSString *)base64EncodedStringWithSeparateLines:(BOOL)separateLines;

@end

NSData+Base64.m

#import "NSData+Base64.h"

//
// Mapping from 6 bit pattern to ASCII character.
//
static unsigned char base64EncodeLookup[65] =
    "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";

//
// Definition for "masked-out" areas of the base64DecodeLookup mapping
//
#define xx 65

//
// Mapping from ASCII character to 6 bit pattern.
//
static unsigned char base64DecodeLookup[256] =
{
    xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, 
    xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, 
    xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, 62, xx, xx, xx, 63, 
    52, 53, 54, 55, 56, 57, 58, 59, 60, 61, xx, xx, xx, xx, xx, xx, 
    xx,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 
    15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, xx, xx, xx, xx, xx, 
    xx, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 
    41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, xx, xx, xx, xx, xx, 
    xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, 
    xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, 
    xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, 
    xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, 
    xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, 
    xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, 
    xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, 
    xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, 
};

//
// Fundamental sizes of the binary and base64 encode/decode units in bytes
//
#define BINARY_UNIT_SIZE 3
#define BASE64_UNIT_SIZE 4

//
// NewBase64Decode
//
// Decodes the base64 ASCII string in the inputBuffer to a newly malloced
// output buffer.
//
//  inputBuffer - the source ASCII string for the decode
//  length - the length of the string or -1 (to specify strlen should be used)
//  outputLength - if not-NULL, on output will contain the decoded length
//
// returns the decoded buffer. Must be free'd by caller. Length is given by
//  outputLength.
//
void *NewBase64Decode(
    const char *inputBuffer,
    size_t length,
    size_t *outputLength)
{
    if (length == -1)
    {
        length = strlen(inputBuffer);
    }
    
    size_t outputBufferSize =
        ((length+BASE64_UNIT_SIZE-1) / BASE64_UNIT_SIZE) * BINARY_UNIT_SIZE;
    unsigned char *outputBuffer = (unsigned char *)malloc(outputBufferSize);
    
    size_t i = 0;
    size_t j = 0;
    while (i < length)
    {
        //
        // Accumulate 4 valid characters (ignore everything else)
        //
        unsigned char accumulated[BASE64_UNIT_SIZE];
        size_t accumulateIndex = 0;
        while (i < length)
        {
            unsigned char decode = base64DecodeLookup[inputBuffer[i++]];
            if (decode != xx)
            {
                accumulated[accumulateIndex] = decode;
                accumulateIndex++;
                
                if (accumulateIndex == BASE64_UNIT_SIZE)
                {
                    break;
                }
            }
        }
        
        //
        // Store the 6 bits from each of the 4 characters as 3 bytes
        //
        // (Uses improved bounds checking suggested by Alexandre Colucci)
        //
        if(accumulateIndex >= 2)  
            outputBuffer[j] = (accumulated[0] << 2) | (accumulated[1] >> 4);  
        if(accumulateIndex >= 3)  
            outputBuffer[j + 1] = (accumulated[1] << 4) | (accumulated[2] >> 2);  
        if(accumulateIndex >= 4)  
            outputBuffer[j + 2] = (accumulated[2] << 6) | accumulated[3];
        j += accumulateIndex - 1;
    }
    
    if (outputLength)
    {
        *outputLength = j;
    }
    return outputBuffer;
}

//
// NewBase64Encode
//
// Encodes the arbitrary data in the inputBuffer as base64 into a newly malloced
// output buffer.
//
//  inputBuffer - the source data for the encode
//  length - the length of the input in bytes
//  separateLines - if zero, no CR/LF characters will be added. Otherwise
//      a CR/LF pair will be added every 64 encoded chars.
//  outputLength - if not-NULL, on output will contain the encoded length
//      (not including terminating 0 char)
//
// returns the encoded buffer. Must be free'd by caller. Length is given by
//  outputLength.
//
char *NewBase64Encode(
    const void *buffer,
    size_t length,
    bool separateLines,
    size_t *outputLength)
{
    const unsigned char *inputBuffer = (const unsigned char *)buffer;
    
    #define MAX_NUM_PADDING_CHARS 2
    #define OUTPUT_LINE_LENGTH 64
    #define INPUT_LINE_LENGTH ((OUTPUT_LINE_LENGTH / BASE64_UNIT_SIZE) * BINARY_UNIT_SIZE)
    #define CR_LF_SIZE 2
    
    //
    // Byte accurate calculation of final buffer size
    //
    size_t outputBufferSize =
            ((length / BINARY_UNIT_SIZE)
                + ((length % BINARY_UNIT_SIZE) ? 1 : 0))
                    * BASE64_UNIT_SIZE;
    if (separateLines)
    {
        outputBufferSize +=
            (outputBufferSize / OUTPUT_LINE_LENGTH) * CR_LF_SIZE;
    }
    
    //
    // Include space for a terminating zero
    //
    outputBufferSize += 1;

    //
    // Allocate the output buffer
    //
    char *outputBuffer = (char *)malloc(outputBufferSize);
    if (!outputBuffer)
    {
        return NULL;
    }

    size_t i = 0;
    size_t j = 0;
    const size_t lineLength = separateLines ? INPUT_LINE_LENGTH : length;
    size_t lineEnd = lineLength;
    
    while (true)
    {
        if (lineEnd > length)
        {
            lineEnd = length;
        }

        for (; i + BINARY_UNIT_SIZE - 1 < lineEnd; i += BINARY_UNIT_SIZE)
        {
            //
            // Inner loop: turn 48 bytes into 64 base64 characters
            //
            outputBuffer[j++] = base64EncodeLookup[(inputBuffer[i] & 0xFC) >> 2];
            outputBuffer[j++] = base64EncodeLookup[((inputBuffer[i] & 0x03) << 4)
                | ((inputBuffer[i + 1] & 0xF0) >> 4)];
            outputBuffer[j++] = base64EncodeLookup[((inputBuffer[i + 1] & 0x0F) << 2)
                | ((inputBuffer[i + 2] & 0xC0) >> 6)];
            outputBuffer[j++] = base64EncodeLookup[inputBuffer[i + 2] & 0x3F];
        }
        
        if (lineEnd == length)
        {
            break;
        }
        
        //
        // Add the newline
        //
        outputBuffer[j++] = '\r';
        outputBuffer[j++] = '\n';
        lineEnd += lineLength;
    }
    
    if (i + 1 < length)
    {
        //
        // Handle the single '=' case
        //
        outputBuffer[j++] = base64EncodeLookup[(inputBuffer[i] & 0xFC) >> 2];
        outputBuffer[j++] = base64EncodeLookup[((inputBuffer[i] & 0x03) << 4)
            | ((inputBuffer[i + 1] & 0xF0) >> 4)];
        outputBuffer[j++] = base64EncodeLookup[(inputBuffer[i + 1] & 0x0F) << 2];
        outputBuffer[j++] = '=';
    }
    else if (i < length)
    {
        //
        // Handle the double '=' case
        //
        outputBuffer[j++] = base64EncodeLookup[(inputBuffer[i] & 0xFC) >> 2];
        outputBuffer[j++] = base64EncodeLookup[(inputBuffer[i] & 0x03) << 4];
        outputBuffer[j++] = '=';
        outputBuffer[j++] = '=';
    }
    outputBuffer[j] = 0;
    
    //
    // Set the output length and return the buffer
    //
    if (outputLength)
    {
        *outputLength = j;
    }
    return outputBuffer;
}

@implementation NSData (Base64)

//
// dataFromBase64String:
//
// Creates an NSData object containing the base64 decoded representation of
// the base64 string 'aString'
//
// Parameters:
//    aString - the base64 string to decode
//
// returns the autoreleased NSData representation of the base64 string
//
+ (NSData *)dataFromBase64String:(NSString *)aString
{
    NSData *data = [aString dataUsingEncoding:NSASCIIStringEncoding];
    size_t outputLength;
    void *outputBuffer = NewBase64Decode([data bytes], [data length], &outputLength);
    NSData *result = [NSData dataWithBytes:outputBuffer length:outputLength];
    free(outputBuffer);
    return result;
}

//
// base64EncodedString
//
// Creates an NSString object that contains the base 64 encoding of the
// receiver's data. Lines are broken at 64 characters long.
//
// returns an autoreleased NSString being the base 64 representation of the
//  receiver.
//
- (NSString *)base64EncodedString
{
    size_t outputLength;
    char *outputBuffer =
        NewBase64Encode([self bytes], [self length], true, &outputLength);
    
    NSString *result =
        [[NSString alloc]
            initWithBytes:outputBuffer
            length:outputLength
            encoding:NSASCIIStringEncoding];
    free(outputBuffer);
    return result;
}

// added by Hiroshi Hashiguchi
- (NSString *)base64EncodedStringWithSeparateLines:(BOOL)separateLines
{
    size_t outputLength;
    char *outputBuffer =
    NewBase64Encode([self bytes], [self length], separateLines, &outputLength);
    
    NSString *result =
    [[NSString alloc]
      initWithBytes:outputBuffer
      length:outputLength
      encoding:NSASCIIStringEncoding];
    free(outputBuffer);
    return result;
}


@end
上一篇 下一篇

猜你喜欢

热点阅读