FPGA状态机

2017-06-16  本文已影响0人  暗夜望月

其他参考:主要是区分moore状态机和mealy状态机的。
[原创][FPGA]有限状态机FSM学习笔记(一)
[转载][FPGA]有限状态机FSM学习笔记(二)
[笔记][FPGA]有限状态机FSM学习笔记(三)

数字系统有两大类有限状态机(Finite State Machine,FSM):摩尔(Moore)状态机和米勒(Mealy)状态机。

Moore状态机

其最大特点是输出只由当前状态确定,与输入无关。Moore状态机的状态图中的每一个状态都包含一个输出信号。这是一个典型的Moore状态机的状态跳转图,x、y、z是输入,a、b、c是输出。
    


Mealy状态机

它的输出不仅与当前状态有关系,而且与它的输入也有关系,因而在状态图中每条转移边需要包含输入和输出的信息。


状态编码

数字逻辑系统状态机设计中常见的编码方式有:二进制码(Binary码)、格雷码(Gray码)、独热码(One-hot码)。

二进制编码、格雷码编码使用最少的触发器,消耗较多的组合逻辑,而独热码编码反之。独热码编码的最大优势在于状态比较时仅仅需要比较一个位,从而一定程度上简化了译码逻辑。虽然在需要表示同样的状态数时,独热编码占用较多的位,也就是消耗较多的触发器,但这些额外触发器占用的面积可与译码电路省下来的面积相抵消。

在CPLD中,由于器件拥有较多的组合逻辑资源,所以CPLD多使用二进制编码或格雷码,而FPGA更多地提供触发器资源,所以在FPGA中多使用独热码编码。当然,这并不是说在FPGA中就非得用独热编码,在CPLD中不能用独热编码,一般的,对于小型设计(状态数小于4)使用二进制编码,当状态数处于4-24之间时,宜采用独热码编码,而大型状态机(状态数大于24)使用格雷码更高效。

二进制码(Binary)和格雷码(Gray) 属于压缩状态编码,这种编码的优点是使用的状态向量最少,但是需要较多的逻辑资源用来状态译码。二进制码从一个状态转换到相邻状态时,可能有多个比特位发生变化,易产生中间状态转移问题,状态机的速度也要比采用其它编码方式慢。格雷码两个相邻的码值仅有一位就可区分,这将会减少电路中相邻物理信号线同时变化的情况,因而可以减少电路中的电噪声。Johnson码也有同样的特点,但是要用较多的位数。

独热码(One-hot)指对任意给定的状态,状态寄存器中只有1位为1,其余位都为0。n状态的有限状态机需要n个触发器,但这种有限状态机只需对寄存器中的一位进行译码,简化了译码逻辑电路,额外触发器占用的面积可用译码电路省下来的面积抵消。当设计中加入更多的状态时,译码逻辑没有变得更加复杂,有限状态机的速度仅取决于到某特定状态的转移数量,而其它类型有限状态机在状态增加时速度会明显下降。独热码还具有设计简单、修改灵活、易于综合和调试等优点。独热码相对于二进制码,速度快但占用面积大。

状态机的描述

状态机有三种描述方式:一段式状态机、两段式状态机、三段式状态机。下面就用一个小例子来看看三种方式是如何实现的。

  
 //一段式状态机的实现:在异步复位信号的控制下,一段式状态机进入IDLE
 //状态,q_sig4被复位,一旦sig1或者sig2有效,状态机进入WAIT状态,如果
 //sig1和sig2同时有效,那么状态机进入DONE状态,
 //如果sig4还有效,那么q_sig4置位,同时状态机进入IDLE状态。
 
 module one_seg_fsm(clk,reset,sig1,sig2,sig3,q_sig4,q_sm_state);
 //数据声明部分
 input clk,reset,sig1,sig2,sig3;
 
 output reg       q_sig4;
 output reg [1:0] q_sm_state;
 
 //参数声明
 parameter  IDLE       = 2'b00;
 parameter  WAIT       = 2'b01;
 parameter  DONE       = 2'b10;
 
 //状态跳转逻辑程序设计
 always @(posedge clk or posedge reset)
   begin
       if(reset)
       begin
           q_sig4     <= 0;
           q_sm_state <= IDLE;
       end
     else 
         begin
             case(q_sm_state) 
                   IDLE: begin
                              if(sig1 || sig2)
                                   begin
                                       q_sm_state <= WAIT;
                                       q_sig4 <= 1'b0;
                                   end
                                  else
                                      begin
                                          q_sm_state <= IDLE;
                                          q_sig4 <= 1'b0;
                                    end
                           end
                   WAIT: begin
                             if(sig2 && sig3)
                                 begin
                                     q_sm_state <= DONE;
                                     q_sig4     <= 1'b0;
                               end
                             else
                                 begin
                                     q_sm_state <= WAIT;
                                     q_sig4     <= 1'b0;
                               end
                          end       
                                     
                   DONE:begin
                            if(sig3)
                                begin
                                    q_sm_state <= IDLE;
                                    q_sig4     <= 1'b1;
                                end
                            else
                                begin
                                    q_sm_state <= DONE;
                                    q_sig4     <= 1'b0;
                                end
                           end
                    
                 default: begin
                              q_sm_state <= IDLE;
                              q_sig4     <= 0;
                            end
           endcase   
     end
   end
 endmodule 
 //本例主要采用两段式状态机:在异步复位信号的控制下,一段式状态机进入IDLE
 //状态,q_sig4被复位,一旦sig1或者sig2有效,状态机进入WAIT状态,如果sig1和sig2同时有效,那么
 //状态机进入DONE状态,如果sig4还有效,那么q_sig4置位,同时状态机进入IDLE状态。
 
 module two_seg_fsm(clk,reset,sig1,sig2,sig3,q_sig4);
 //数据声明部分
 input clk,reset,sig1,sig2,sig3;
 
 output reg       q_sig4;
 
 reg [1:0]    current_state, next_state;
 
 //参数声明
 parameter  IDLE       = 2'b00;
 parameter  WAIT       = 2'b01;
 parameter  DONE       = 2'b10;
 
 //状态跳转程序设计
 always @(posedge clk or posedge reset)
  if(reset)
      current_state <= IDLE;
  else
      current_state <= next_state;
      
 //状态逻辑输出
 always @(current_state or sig1 or sig2 or sig3)
   begin
       case(current_state)
                   IDLE: begin
                              if(sig1 || sig2)
                                   begin
                                       next_state = WAIT;
                                       q_sig4    = 1'b0;
                                   end
                                  else
                                      begin
                                          next_state = IDLE;
                                          q_sig4     = 1'b0;
                                    end
                           end
                   WAIT: begin
                             if(sig2 && sig3)
                                 begin
                                     next_state = DONE;
                                     q_sig4     = 1'b0;
                               end
                             else
                                 begin
                                     next_state = WAIT;
                                     q_sig4     = 1'b0;
                               end
                          end       
                                     
                   DONE:begin
                            if(sig3)
                                begin
                                    next_state = IDLE;
                                    q_sig4     = 1'b1;
                                end
                            else
                                begin
                                    next_state = DONE;
                                    q_sig4     = 1'b0;
                                end
                           end
                    
                 default: begin
                              next_state = IDLE;
                              q_sig4     = 0;
                            end
           endcase   
     
   end
 endmodule  

三段式状态机的基本格式是:第一个always语句实现同步状态跳转;第二个always语句实现组合逻辑;第三个always语句实现同步输出。

//本例主要采用三段式状态机:在异步复位信号的控制下,一段式状态机进入IDLE
 //状态,q_sig4被复位,一旦sig1或者sig2有效,状态机进入WAIT状态,如果sig1和sig2同时有效,那么
 //状态机进入DONE状态,如果sig4还有效,那么q_sig4置位,同时状态机进入IDLE状态。
 
 module three_seg_fsm(clk,reset,sig1,sig2,sig3,q_sig4);
 //数据声明部分
 input clk,reset,sig1,sig2,sig3;
 
 output reg       q_sig4;
 
 reg [1:0]    current_state, next_state;
 
 //参数声明
 parameter  IDLE       = 2'b00;
 parameter  WAIT       = 2'b01;
 parameter  DONE       = 2'b10;
 
 //状态跳转程序设计
 always @(posedge clk or posedge reset)
  if(reset)
      current_state <= IDLE;
  else
      current_state <= next_state;
      
 //状态跳转输出
 always @(current_state or sig1 or sig2 or sig3)
   begin
       case(current_state)
       IDLE: begin
                              if(sig1 || sig2)
                                   begin
                                       next_state = WAIT;                                      
                                   end
                                  else
                                      begin
                                          next_state = IDLE;                                         
                                    end
                           end
                   WAIT: begin
                             if(sig2 && sig3)
                                 begin
                                     next_state = DONE;                                    
                               end
                             else
                                 begin
                                     next_state = WAIT;                                    
                               end
                          end       
                                     
                   DONE:begin
                            if(sig3)
                                begin
                                    next_state = IDLE;                                   
                                end
                            else
                                begin
                                    next_state = DONE;                                   
                                end
                           end
                    
                 default: begin
                              next_state = IDLE;                             
                            end
           endcase       
   end
   
   //逻辑输出
   always @(posedge clk or posedge reset)
     if(reset)
         q_sig4 <= 1'b0;
     else
         begin
             case(next_state)
                 IDLE,
                 WAIT: q_sig4 <= 1'b0;
                 DONE: q_sig4 <= 1'b1;
                 default: q_sig4 <= 1'b0;
           endcase
         end
         
 endmodule   
上一篇 下一篇

猜你喜欢

热点阅读