分布式泛大数据BIG DATA-实时计算

Flink集群部署模式

2021-08-31  本文已影响0人  零度沸腾_yjz

根据集群的生命周期、资源隔离方式和应用程序的main()方法执行位置(client或者JobManager)可以将集群部署模式分为:Flink Session Cluster(session mode)、Flink Job Cluster(per-job mode) 和Flink Application Cluster(application mode)三类。

deployment mode

Flink Session Cluster(session mode)

Flink Session Cluster集群部署模式也称为session mode。该模式集群会预先启动、长时间运行,并且能够接收多个job提交运行。也就是提交到集群的job共享一套flink runtime cluster(JobManager和TaskManager)。

该模式特点如下:

Flink Session Cluster

Flink Job Cluter(per-job mode)

Flink Job Cluster集群部署模式又称为per-job mode。该模式与Job绑定,集群管理器会为每个Job启动一个flink runtime cluster(JobManager和TaskManager)。Client会首先向集群管理器请求资源来启动JobManager,并将job提交给其内部的Dispatcher,TaskManager根据job的资源请求延迟分配启动的。

该模式特点如下:

Flink Job Cluster

NOTE: Flink Job Cluster模式不支持部署在Kubernetes上。

Flink Application Cluster(application mode)

Flink Application Cluster集群部署模式又称为Application mode。该模式集群属于专属集群模式,只会执行一个Flink Application中的job,集群管理器为每个Flink Application启动一个flink runtime cluster(JobManager和TaskManager)。并且应用程序的main方法是运行在Cluster中,而不是client上。

该模式可以看做是对per-job模式和session模式的优化部署模式。集群执行job粒度上,相较前两者找到了更好的一个隔离点,并且减轻了Client的负载。

该模式特点如下:

Flink Application Cluster

NOTE: Application mode中的多个job,实际在代码上的表现就是能够允许在一个Application里面调用多次execute/executeAsyc方法。但是execute方法会被阻塞,也就是只有一个job完成之后才能继续下一个job的execute,但是可以通过executeAsync进行异步非阻塞执行。
另一个需要注意的点是,对于Application mode的进行HA部署时,是不支持多个execute执行的。

上一篇 下一篇

猜你喜欢

热点阅读