Swift Swift那些事swift mvvm

Swift底层进阶--020:Dictionary源码解析

2021-02-15  本文已影响0人  帅驼驼
  • Swift字典用来存储无序的相同类型数据的集合,字典会强制检测元素的类型,如果类型不同则会报错。
  • Swift字典每个值(value)都关联唯一的键(key),键作为字典中的这个值数据的标识符。
  • 和数组中的元素不同,字典中的元素并没有具体顺序,需要通过key访问到元素。
  • 字典的key没有类型限制,可以是IntString,但必须是唯一的。
  • 如果创建一个字典,并赋值给一个变量,则创建的字典是可以修改的。这意味着在创建字典后,可以通过添加、删除、修改的方式改变字典里的元素。
  • 如果将一个字典赋值给常量,字典是不可修改的,并且字典的大小和内容都不可以修改。
基本定义

Dictionary类型的键值对必须遵循Hashable协议,因为它使用的就是哈希表

哈希表

哈希表(Hash table)也叫散列表,是根据关键字(Key value)⽽直接访问在内存存储位置的数据结构。也就是说,它通过计算⼀个关于键值的函数,将所需查询的数据映射到表中⼀个位置来访问记录,这加快了查找速度。这个映射函数称做散列函数,存放记录的数组称做散列表。

散列函数

散列函数又称散列算法、哈希函数。它的目标是计算key在数组中的下标。

几种常用的散列函数构造方法:

  • 直接寻址法
  • 数字分析法
  • 平⽅取中法
  • 折叠法
  • 随机数法
  • 除留余数法
哈希冲突

再优秀的哈希算法永远无法避免出现哈希冲突。哈希冲突指的是两个不同的key经过哈希计算后得到的数组下标是相同的。

哈希冲突几种常用的解决方法:

  • 开放定址法
  • 拉链法
负载因⼦

负载因子 = 填⼊表中的元素个数 / 散列表的⻓度

一个非空散列表的负载因子填⼊表中的元素个数 / 散列表的⻓度。这是面临再次散列或扩容时的决策参数,有助于确定散列函数的效率。也就是说,该参数指出了散列函数是否将关键字均匀分布。

内存布局

Dictionary是否是连续的内存地址空间?如果不是,当前元素和元素之前的关系如何确定?如何计算⼀个元素的地址?

通过字⾯量方式创建⼀个字典:

var dic = ["1": "Kody", "2": "Hank", "3": "Cooci", "4" : "Cat"]
源码分析

上述代码,通过字⾯量方式创建Dictionary,在源码中可以直接搜索literal

打开Dictionary.swift文件,找到init(dictionaryLiteral elements:)的定义:

  @inlinable
  @_effects(readonly)
  @_semantics("optimize.sil.specialize.generic.size.never")
  public init(dictionaryLiteral elements: (Key, Value)...) {
    let native = _NativeDictionary<Key, Value>(capacity: elements.count)
    for (key, value) in elements {
      let (bucket, found) = native.find(key)
      _precondition(!found, "Dictionary literal contains duplicate keys")
      native._insert(at: bucket, key: key, value: value)
    }
    self.init(_native: native)
  }
  • 创建了一个_NativeDictionary的实例对象
  • 遍历elements,通过实例对象的find方法,找到key值对应的bucket
  • bucket相当于要插入的位置
  • keyvalue循环插入到bucket
  • 最后调用init方法
  • found:布尔类型,如果字典初始化时,字面量里包含重复key值,运行时报错Dictionary literal contains duplicate keys

打开NativeDictionary.swift文件,找到_NativeDictionary的定义:

@usableFromInline
@frozen
internal struct _NativeDictionary<Key: Hashable, Value> {
  @usableFromInline
  internal typealias Element = (key: Key, value: Value)

  /// See this comments on __RawDictionaryStorage and its subclasses to
  /// understand why we store an untyped storage here.
  @usableFromInline
  internal var _storage: __RawDictionaryStorage

  /// Constructs an instance from the empty singleton.
  @inlinable
  internal init() {
    self._storage = __RawDictionaryStorage.empty
  }

  /// Constructs a dictionary adopting the given storage.
  @inlinable
  internal init(_ storage: __owned __RawDictionaryStorage) {
    self._storage = storage
  }

  @inlinable
  internal init(capacity: Int) {
    if capacity == 0 {
      self._storage = __RawDictionaryStorage.empty
    } else {
      self._storage = _DictionaryStorage<Key, Value>.allocate(capacity: capacity)
    }
  }

#if _runtime(_ObjC)
  @inlinable
  internal init(_ cocoa: __owned __CocoaDictionary) {
    self.init(cocoa, capacity: cocoa.count)
  }

  @inlinable
  internal init(_ cocoa: __owned __CocoaDictionary, capacity: Int) {
    if capacity == 0 {
      self._storage = __RawDictionaryStorage.empty
    } else {
      _internalInvariant(cocoa.count <= capacity)
      self._storage =
        _DictionaryStorage<Key, Value>.convert(cocoa, capacity: capacity)
      for (key, value) in cocoa {
        insertNew(
          key: _forceBridgeFromObjectiveC(key, Key.self),
          value: _forceBridgeFromObjectiveC(value, Value.self))
      }
    }
  }
#endif
}
  • _NativeDictionary是一个结构体
  • 使用init(capacity:)方法初始化,如果capacity容量等于0,使用__RawDictionaryStorage.empty。否则使用_DictionaryStorage,通过allocate方法,按容量大小分配内存空间

打开DictionaryStorage.swift文件,找到_DictionaryStorage的定义:

@usableFromInline
final internal class _DictionaryStorage<Key: Hashable, Value>
  : __RawDictionaryStorage, _NSDictionaryCore {
  // This type is made with allocWithTailElems, so no init is ever called.
  // But we still need to have an init to satisfy the compiler.
  @nonobjc
  override internal init(_doNotCallMe: ()) {
    _internalInvariantFailure("This class cannot be directly initialized")
  }

  deinit {
    guard _count > 0 else { return }
    if !_isPOD(Key.self) {
      let keys = self._keys
      for bucket in _hashTable {
        (keys + bucket.offset).deinitialize(count: 1)
      }
    }
    if !_isPOD(Value.self) {
      let values = self._values
      for bucket in _hashTable {
        (values + bucket.offset).deinitialize(count: 1)
      }
    }
    _count = 0
    _fixLifetime(self)
  }

  @inlinable
  final internal var _keys: UnsafeMutablePointer<Key> {
    @inline(__always)
    get {
      return self._rawKeys.assumingMemoryBound(to: Key.self)
    }
  }

  @inlinable
  final internal var _values: UnsafeMutablePointer<Value> {
    @inline(__always)
    get {
      return self._rawValues.assumingMemoryBound(to: Value.self)
    }
  }

  internal var asNative: _NativeDictionary<Key, Value> {
    return _NativeDictionary(self)
  }

#if _runtime(_ObjC)
  @objc
  internal required init(
    objects: UnsafePointer<AnyObject?>,
    forKeys: UnsafeRawPointer,
    count: Int
  ) {
    _internalInvariantFailure("This class cannot be directly initialized")
  }

  @objc(copyWithZone:)
  internal func copy(with zone: _SwiftNSZone?) -> AnyObject {
    return self
  }

  @objc
  internal var count: Int {
    return _count
  }

  @objc(keyEnumerator)
  internal func keyEnumerator() -> _NSEnumerator {
    return _SwiftDictionaryNSEnumerator<Key, Value>(asNative)
  }

  @objc(countByEnumeratingWithState:objects:count:)
  internal func countByEnumerating(
    with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
    objects: UnsafeMutablePointer<AnyObject>?, count: Int
  ) -> Int {
    defer { _fixLifetime(self) }
    let hashTable = _hashTable

    var theState = state.pointee
    if theState.state == 0 {
      theState.state = 1 // Arbitrary non-zero value.
      theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
      theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
      theState.extra.0 = CUnsignedLong(hashTable.startBucket.offset)
    }

    // Test 'objects' rather than 'count' because (a) this is very rare anyway,
    // and (b) the optimizer should then be able to optimize away the
    // unwrapping check below.
    if _slowPath(objects == nil) {
      return 0
    }

    let unmanagedObjects = _UnmanagedAnyObjectArray(objects!)
    var bucket = _HashTable.Bucket(offset: Int(theState.extra.0))
    let endBucket = hashTable.endBucket
    _precondition(bucket == endBucket || hashTable.isOccupied(bucket),
      "Invalid fast enumeration state")
    var stored = 0
    for i in 0..<count {
      if bucket == endBucket { break }

      let key = _keys[bucket.offset]
      unmanagedObjects[i] = _bridgeAnythingToObjectiveC(key)

      stored += 1
      bucket = hashTable.occupiedBucket(after: bucket)
    }
    theState.extra.0 = CUnsignedLong(bucket.offset)
    state.pointee = theState
    return stored
  }

  @objc(objectForKey:)
  internal func object(forKey aKey: AnyObject) -> AnyObject? {
    guard let nativeKey = _conditionallyBridgeFromObjectiveC(aKey, Key.self)
    else { return nil }

    let (bucket, found) = asNative.find(nativeKey)
    guard found else { return nil }
    let value = asNative.uncheckedValue(at: bucket)
    return _bridgeAnythingToObjectiveC(value)
  }

  @objc(getObjects:andKeys:count:)
  internal func getObjects(
    _ objects: UnsafeMutablePointer<AnyObject>?,
    andKeys keys: UnsafeMutablePointer<AnyObject>?,
    count: Int) {
    _precondition(count >= 0, "Invalid count")
    guard count > 0 else { return }
    var i = 0 // Current position in the output buffers
    switch (_UnmanagedAnyObjectArray(keys), _UnmanagedAnyObjectArray(objects)) {
    case (let unmanagedKeys?, let unmanagedObjects?):
      for (key, value) in asNative {
        unmanagedObjects[i] = _bridgeAnythingToObjectiveC(value)
        unmanagedKeys[i] = _bridgeAnythingToObjectiveC(key)
        i += 1
        guard i < count else { break }
      }
    case (let unmanagedKeys?, nil):
      for (key, _) in asNative {
        unmanagedKeys[i] = _bridgeAnythingToObjectiveC(key)
        i += 1
        guard i < count else { break }
      }
    case (nil, let unmanagedObjects?):
      for (_, value) in asNative {
        unmanagedObjects[i] = _bridgeAnythingToObjectiveC(value)
        i += 1
        guard i < count else { break }
      }
    case (nil, nil):
      // Do nothing.
      break
    }
  }
#endif
}
  • _DictionaryStorage是一个类,继承自__RawDictionaryStorage,遵循_NSDictionaryCore协议
  • _DictionaryStorage使用final关键字修饰,子类不可重写

找到__RawDictionaryStorage的定义:

@_fixed_layout
@usableFromInline
@_objc_non_lazy_realization
internal class __RawDictionaryStorage: __SwiftNativeNSDictionary {
  // NOTE: The precise layout of this type is relied on in the runtime to
  // provide a statically allocated empty singleton.  See
  // stdlib/public/stubs/GlobalObjects.cpp for details.

  /// The current number of occupied entries in this dictionary.
  @usableFromInline
  @nonobjc
  internal final var _count: Int

  /// The maximum number of elements that can be inserted into this set without
  /// exceeding the hash table's maximum load factor.
  @usableFromInline
  @nonobjc
  internal final var _capacity: Int

  /// The scale of this dictionary. The number of buckets is 2 raised to the
  /// power of `scale`.
  @usableFromInline
  @nonobjc
  internal final var _scale: Int8

  /// The scale corresponding to the highest `reserveCapacity(_:)` call so far,
  /// or 0 if there were none. This may be used later to allow removals to
  /// resize storage.
  ///
  /// FIXME: <rdar://problem/18114559> Shrink storage on deletion
  @usableFromInline
  @nonobjc
  internal final var _reservedScale: Int8

  // Currently unused, set to zero.
  @nonobjc
  internal final var _extra: Int16

  /// A mutation count, enabling stricter index validation.
  @usableFromInline
  @nonobjc
  internal final var _age: Int32

  /// The hash seed used to hash elements in this dictionary instance.
  @usableFromInline
  internal final var _seed: Int

  /// A raw pointer to the start of the tail-allocated hash buffer holding keys.
  @usableFromInline
  @nonobjc
  internal final var _rawKeys: UnsafeMutableRawPointer

  /// A raw pointer to the start of the tail-allocated hash buffer holding
  /// values.
  @usableFromInline
  @nonobjc
  internal final var _rawValues: UnsafeMutableRawPointer

  // This type is made with allocWithTailElems, so no init is ever called.
  // But we still need to have an init to satisfy the compiler.
  @nonobjc
  internal init(_doNotCallMe: ()) {
    _internalInvariantFailure("This class cannot be directly initialized")
  }

  @inlinable
  @nonobjc
  internal final var _bucketCount: Int {
    @inline(__always) get { return 1 &<< _scale }
  }

  @inlinable
  @nonobjc
  internal final var _metadata: UnsafeMutablePointer<_HashTable.Word> {
    @inline(__always) get {
      let address = Builtin.projectTailElems(self, _HashTable.Word.self)
      return UnsafeMutablePointer(address)
    }
  }

  // The _HashTable struct contains pointers into tail-allocated storage, so
  // this is unsafe and needs `_fixLifetime` calls in the caller.
  @inlinable
  @nonobjc
  internal final var _hashTable: _HashTable {
    @inline(__always) get {
      return _HashTable(words: _metadata, bucketCount: _bucketCount)
    }
  }
}
  • __RawDictionaryStorage类,定义基础数据结构,例如_count_capacity
  • 其中_scale2n次方数,参与计算_bucketCount
  • _seed为哈希种子

找到allocate的定义:

  @usableFromInline
  @_effects(releasenone)
  static internal func allocate(capacity: Int) -> _DictionaryStorage {
    let scale = _HashTable.scale(forCapacity: capacity)
    return allocate(scale: scale, age: nil, seed: nil)
  }
  • 调用_HashTablescale方法,计算scale
  • 调用allocate方法,传入scale

打开HashTable.swift文件,找到_HashTable的定义:

@usableFromInline
@frozen
internal struct _HashTable {
  @usableFromInline
  internal typealias Word = _UnsafeBitset.Word

  @usableFromInline
  internal var words: UnsafeMutablePointer<Word>

  @usableFromInline
  internal let bucketMask: Int

  @inlinable
  @inline(__always)
  internal init(words: UnsafeMutablePointer<Word>, bucketCount: Int) {
    _internalInvariant(bucketCount > 0 && bucketCount & (bucketCount - 1) == 0,
      "bucketCount must be a power of two")
    self.words = words
    // The bucket count is a power of two, so subtracting 1 will never overflow
    // and get us a nice mask.
    self.bucketMask = bucketCount &- 1
  }

  @inlinable
  internal var bucketCount: Int {
    @inline(__always) get {
      return bucketMask &+ 1
    }
  }

  @inlinable
  internal var wordCount: Int {
    @inline(__always) get {
      return _UnsafeBitset.wordCount(forCapacity: bucketCount)
    }
  }
}
  • words可以理解为二进制位,记录当前位置是否插入元素
  • bucketMask等于bucketCount-1,而bucketCount2n次方数,所以bucketMask相当于掩码
  • _HashTable并不直接存储数据,而是存储二进制位

回到DictionaryStorage.swift文件,找到allocate的定义:

  static internal func allocate(
    scale: Int8,
    age: Int32?,
    seed: Int?
  ) -> _DictionaryStorage {
    // The entry count must be representable by an Int value; hence the scale's
    // peculiar upper bound.
    _internalInvariant(scale >= 0 && scale < Int.bitWidth - 1)

    let bucketCount = (1 as Int) &<< scale
    let wordCount = _UnsafeBitset.wordCount(forCapacity: bucketCount)
    let storage = Builtin.allocWithTailElems_3(
      _DictionaryStorage<Key, Value>.self,
      wordCount._builtinWordValue, _HashTable.Word.self,
      bucketCount._builtinWordValue, Key.self,
      bucketCount._builtinWordValue, Value.self)

    let metadataAddr = Builtin.projectTailElems(storage, _HashTable.Word.self)
    let keysAddr = Builtin.getTailAddr_Word(
      metadataAddr, wordCount._builtinWordValue, _HashTable.Word.self,
      Key.self)
    let valuesAddr = Builtin.getTailAddr_Word(
      keysAddr, bucketCount._builtinWordValue, Key.self,
      Value.self)
    storage._count = 0
    storage._capacity = _HashTable.capacity(forScale: scale)
    storage._scale = scale
    storage._reservedScale = 0
    storage._extra = 0

    if let age = age {
      storage._age = age
    } else {
      // The default mutation count is simply a scrambled version of the storage
      // address.
      storage._age = Int32(
        truncatingIfNeeded: ObjectIdentifier(storage).hashValue)
    }

    storage._seed = seed ?? _HashTable.hashSeed(for: storage, scale: scale)
    storage._rawKeys = UnsafeMutableRawPointer(keysAddr)
    storage._rawValues = UnsafeMutableRawPointer(valuesAddr)

    // Initialize hash table metadata.
    storage._hashTable.clear()
    return storage
  }
  • 通过&运算符计算bucketCount
  • wordCount通过bucketCount计算要记录的二进制位
  • allocWithTailElems_3在类的后面分配连续的内存空间,分别存储KeyValue
Dictionary内存布局
  • Dictionary包含DictionaryStorage
  • DictionaryStorage类包含metaDatarefCount_count_capacity
  • 中间64位存储_scale_reservedScale_extra_age
  • 接下来存储的_seed_rawKeys_rawValuesmetaAddr
  • 其中_rawKeys_rawValues存储的是数组地址

通过LLDB调试来验证⼀下:

通过字⾯量方式创建⼀个字典:

var dic = ["1": "Kody", "2": "Hank", "3": "Cooci", "4" : "Cat"]

通过withUnsafePointer打印dic内存地址

通过x/8g查看dic的内存地址,里面包含了一个堆上的地址0x000000010067aed0

通过x/8g查看内存地址0x000000010067aed0

  • 0x00007fff99540800metaData元类型
  • 0x0000000000000002refCoutn引用计数
  • 0x0000000000000004_count
  • 0x0000000000000006_capacity
  • 0xcf1ba4a80000000364位连续内存,包含_scale_reservedScale_extra_age
  • 0x000000010067aed0_seed种子,以对象创建的地址作为随机数的开始
  • 0x000000010067af18_rawKeys
  • 0x000000010067af98_rawValues

通过x/16g查看_rawKeys内存地址

  • 连续内存中并不是连续存储的,0x0000000000000032转为十进制50,对应的是key2ASCII码
  • 后面的0xe100000000000000表示key2的字符串长度
  • 同理后面的0x00000000000000330x00000000000000310x0000000000000034分别对应的key值是314

通过x/16g查看_rawValues内存地址

  • _rawKeys同理,前面的0x000000006b6e61480x00000069636f6f430x0000000079646f4b0x0000000000746143表示value
  • 后面的0xe4000000000000000xe5000000000000000xe4000000000000000xe300000000000000表示value值的字符串长度
Dictionary插⼊⼀个值
var dic = ["1": "Kody", "2": "Hank", "3": "Cooci", "4" : "Cat"]
dic["5"] = "Swift"

打开Dictionary.swift文件,找到subscript的定义:

  @inlinable
  public subscript(
    key: Key, default defaultValue: @autoclosure () -> Value
  ) -> Value {
    @inline(__always)
    get {
      return _variant.lookup(key) ?? defaultValue()
    }
    @inline(__always)
    _modify {
      let (bucket, found) = _variant.mutatingFind(key)
      let native = _variant.asNative
      if !found {
        let value = defaultValue()
        native._insert(at: bucket, key: key, value: value)
      }
      let address = native._values + bucket.offset
      defer { _fixLifetime(self) }
      yield &address.pointee
    }
  }
  • get方法里,_variant是一个关联值的枚举类型
  • 通过_variantlookup方法,找到key值是否存在

打开NativeDictionary.swift文件,找到lookup的定义:

  @inlinable
  @inline(__always)
  func lookup(_ key: Key) -> Value? {
    if count == 0 {
      // Fast path that avoids computing the hash of the key.
      return nil
    }
    let (bucket, found) = self.find(key)
    guard found else { return nil }
    return self.uncheckedValue(at: bucket)
  }
  • 通过find方法,传入key,找到bucketfound

找到find的定义:

  @inlinable
  @inline(__always)
  internal func find(_ key: Key) -> (bucket: Bucket, found: Bool) {
    return _storage.find(key)
  }

调用_storagefind方法,传入key

打开DictionaryStorage.swift文件,找到find的定义:

  @_alwaysEmitIntoClient
  @inline(never)
  internal final func find<Key: Hashable>(_ key: Key) -> (bucket: _HashTable.Bucket, found: Bool) {
    return find(key, hashValue: key._rawHashValue(seed: _seed))
  }
  • 调用key_rawHashValue方法,传入_seed种子
  • 本质上就是通过key值得到hashValue
  • 调用find方法,传入keyhashValue

找到find(_ key:, hashValue:)的定义:

  @_alwaysEmitIntoClient
  @inline(never)
  internal final func find<Key: Hashable>(_ key: Key, hashValue: Int) -> (bucket: _HashTable.Bucket, found: Bool) {
      let hashTable = _hashTable
      var bucket = hashTable.idealBucket(forHashValue: hashValue)
      while hashTable._isOccupied(bucket) {
        if uncheckedKey(at: bucket) == key {
          return (bucket, true)
        }
        bucket = hashTable.bucket(wrappedAfter: bucket)
      }
      return (bucket, false)
  }
}
  • 调用hashTableidealBucket方法,传入hashValue,返回bucket
  • 通过_isOccupied方法判断bucket是否被占用

打开HashTable.swift文件,找到idealBucket的定义:

  @inlinable
  @inline(__always)
  internal func idealBucket(forHashValue hashValue: Int) -> Bucket {
    return Bucket(offset: hashValue & bucketMask)
  }

hashValuebucketMask进行&运算,计算index保存到bucket

找到_isOccupied的定义:

  @inlinable
  @inline(__always)
  internal func _isOccupied(_ bucket: Bucket) -> Bool {
    _internalInvariant(isValid(bucket))
    return words[bucket.word].uncheckedContains(bucket.bit)
  }
  • 与原有的二进制位进行计算,使用uncheckedContains返回01,查看是否包含当前bucket

找到bucket(wrappedAfter bucket:)的定义:

  @inlinable
  @inline(__always)
  internal func bucket(wrappedAfter bucket: Bucket) -> Bucket {
    // The bucket is less than bucketCount, which is power of two less than
    // Int.max. Therefore adding 1 does not overflow.
    return Bucket(offset: (bucket.offset &+ 1) & bucketMask)
  }
  • bucket.offset进行+1操作,再和bucketMask进行&运算,然后重新构建bucket

打开NativeDictionary.swift文件,找到uncheckedValue的定义:

  @inlinable
  @inline(__always)
  internal func uncheckedValue(at bucket: Bucket) -> Value {
    defer { _fixLifetime(self) }
    _internalInvariant(hashTable.isOccupied(bucket))
    return _values[bucket.offset]
  }
  • _values是连续存储的数组,直接通过bucket.offset作为index获取指定位置的元素

找到setValue的定义:

  @inlinable
  internal mutating func setValue(
    _ value: __owned Value,
    forKey key: Key,
    isUnique: Bool
  ) {
    let (bucket, found) = mutatingFind(key, isUnique: isUnique)
    if found {
      (_values + bucket.offset).pointee = value
    } else {
      _insert(at: bucket, key: key, value: value)
    }
  }
  • 通过mutatingFind找到bucketfound
  • 如果存在,使用_values加上bucket.offset,将value覆盖
  • 如果不存在,使用_insert方法,在当前bucket位置插入keyvalue

Dictionary插⼊⼀个值的过程:

  • 通过key找到key. hashValue
  • 通过key. hashValuebucketMask进行&运算,计算出index
  • 通过index查找是否有对应key值,如果有采用开放定址法查找下一个bucket是否为空,如果为空返回对应元素
  • 对于setValue也是一样,通过key值先查找,再赋值
使用Swift代码实现简单的HashTable
struct HashTable<Key: Hashable, Value> {
    
    typealias Element = (key: Key, value: Value)
    typealias Bucket = [Element]

    var buckets: [Bucket]
    var count = 0
    
    init(capacity: Int){
        buckets = Array<Bucket>(repeating: [Element](), count: capacity)
    }
    
    func index(key: Key) -> Int {
        return abs(key.hashValue) % buckets.count
    }
    
    subscript(key: Key) -> Value? {
        
        get {
            return getValue(key: key)
        }
        
        set {
            if let value = newValue {
                updateValue(value, key)
            }
            else{
                removeValue(key)
            }
        }
    }
    
    func getValue(key: Key) -> Value? {
        let index = self.index(key: key)
        
        for element in buckets[index] {
            
            if(element.key == key){
                return element.value
            }
        }
        
        return nil
    }
    
    mutating func updateValue(_ value: Value, _ key: Key) -> Value? {
        let index = self.index(key: key)
        
        for (i, element) in buckets[index].enumerated() {
            
            if(element.key == key){
                let originValue = element.value
                buckets[index][i].value = value
                return originValue
            }
        }
        
        buckets[index].append((key: key, value: value))
        count += 1
        
        return nil
    }
    
    mutating func removeValue(_ key: Key) {
        let index = self.index(key: key)
        
        for (i, element) in buckets[index].enumerated() {
            
            if(element.key == key){
                buckets[index].remove(at: i)
                count -= 1
            }
        }
    }
}

var ht = HashTable<String, String>(capacity: 5)
ht["1"] = "Kody"
print(ht["1"])

//输出以下内容:
//Optional("Kody")
上一篇 下一篇

猜你喜欢

热点阅读