arXiv daily

NLP每日论文速递[08.22]

2019-08-22  本文已影响3人  arXiv每日论文速递

同步公众号(arXiv每日论文速递),回复'search 关键词'查询相关最新论文。(* ̄rǒ ̄)

cs.CL 方向,今日共计30篇

[cs.CL]:

【1】 WikiCREM: A Large Unsupervised Corpus for Coreference Resolution
标题:WikiCREM:用于共指消解的大型无监督语料库
作者: Vid Kocijan, Thomas Lukasiewicz
备注:Accepted to the EMNLP 2019 conference
链接:https://arxiv.org/abs/1908.08025

【2】 It Takes Nine to Smell a Rat: Neural Multi-Task Learning for Check-Worthiness Prediction
标题:大鼠闻九闻:神经多任务学习用于检查适当性预测
作者: Slavena Vasileva, Preslav Nakov
备注:Check-worthiness; Fact-Checking; Veracity; Multi-task Learning; Neural Networks. arXiv admin note: text overlap with arXiv:1908.01328
链接:https://arxiv.org/abs/1908.07912

【3】 Evaluating Defensive Distillation For Defending Text Processing Neural Networks Against Adversarial Examples
标题:评估防御蒸馏以防御文本处理神经网络对抗实例
作者: Marcus Soll, Stefan Wermter
备注:Published at the International Conference on Artificial Neural Networks (ICANN) 2019
链接:https://arxiv.org/abs/1908.07899

【4】 Are We Modeling the Task or the Annotator? An Investigation of Annotator Bias in Natural Language Understanding Datasets
标题:我们是对任务建模还是对注释器建模?自然语言理解数据集中注释者偏向的调查
作者: Mor Geva, Jonathan Berant
备注:EMNLP-IJCNLP 2019
链接:https://arxiv.org/abs/1908.07898

【5】 Towards Better Understanding of Spontaneous Conversations: Overcoming Automatic Speech Recognition Errors With Intent Recognition
标题:更好地理解自发对话:用意图识别克服自动语音识别错误
作者: Piotr Żelasko, Yishay Carmiel
链接:https://arxiv.org/abs/1908.07888

【6】 GeoSQA: A Benchmark for Scenario-based Question Answering in the Geography Domain at High School Level
标题:GeoSQA:高中地理领域基于场景的问答基准
作者: Zixian Huang, Yuzhong Qu
备注:6 pages, to appear at the 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP 2019)
链接:https://arxiv.org/abs/1908.07855

【7】 A novel text representation which enables image classifiers to perform text classification, applied to name disambiguation
标题:一种新颖的文本表示,其使图像分类器能够执行文本分类,应用于名称消歧
作者: Stephen M. Petrie, T'Mir D. Julius
链接:https://arxiv.org/abs/1908.07846

【8】 Similarity Learning for Authorship Verification in Social Media
标题:社交媒体中用于作者身份验证的相似性学习
作者: Benedikt Boenninghoff, Dorothea Kolossa
备注:5 pages, 3 figures, 1 table, presented on ICASSP 2019 in Brighton, UK
链接:https://arxiv.org/abs/1908.07844

【9】 PubLayNet: largest dataset ever for document layout analysis
标题:PubLayNet:有史以来最大的文档布局分析数据集
作者: Xu Zhong, Antonio Jimeno Yepes
链接:https://arxiv.org/abs/1908.07836

【10】 Parsimonious Morpheme Segmentation with an Application to Enriching Word Embeddings
标题:简约语素切分及其在丰富词嵌入中的应用
作者: Ahmed El-Kishky, Jiawei Han
链接:https://arxiv.org/abs/1908.07832

【11】 Polly Want a Cracker: Analyzing Performance of Parroting on Paraphrase Generation Datasets
标题:Polly Want a Cracker:在释义生成数据集上分析Parparting的性能
作者: Hongren Mao, Hung-yi Lee
备注:Accepted for EMNLP 2019
链接:https://arxiv.org/abs/1908.07831

【12】 A Multi-level Neural Network for Implicit Causality Detection in Web Texts
标题:一种用于Web文本中隐含因果关系检测的多级神经网络
作者: Shining Liang, Sen Wang
链接:https://arxiv.org/abs/1908.07822

【13】 An Empirical Evaluation of Multi-task Learning in Deep Neural Networks for Natural Language Processing
标题:用于自然语言处理的深层神经网络多任务学习的实证评价
作者: Jianquan Li, Liqun Ma
链接:https://arxiv.org/abs/1908.07820

【14】 Rating for Parents: Predicting Children Suitability Rating for Movies Based on Language of the Movies
标题:家长评分:根据电影语言预测儿童对电影的适宜性评分
作者: Mahsa Shafaei, Thamar Solorio
链接:https://arxiv.org/abs/1908.07819

【15】 Replication of the Keyword Extraction part of the paper "'Without the Clutter of Unimportant Words': Descriptive Keyphrases for Text Visualization"
标题:复制论文的关键字提取部分"'没有不重要单词的混乱':文本可视化的描述性关键短语"
作者: Shibamouli Lahiri
链接:https://arxiv.org/abs/1908.07818

【16】 Disentangling Latent Emotions of Word Embeddings on Complex Emotional Narratives
标题:复杂情感叙事中词嵌入潜在情感的消解
作者: Zhengxuan Wu, Yueyi Jiang
备注:9 pages, submitted and accepted by NLP conference 2019
链接:https://arxiv.org/abs/1908.07817

【17】 A Multi-Turn Emotionally Engaging Dialog Model
标题:一种多轮情感吸引对话模型
作者: Yubo Xie, Pearl Pu
链接:https://arxiv.org/abs/1908.07816

【18】 Improving Captioning for Low-Resource Languages by Cycle Consistency
标题:通过循环一致性改进低资源语言的字幕
作者: Yike Wu, Zhong Su
备注:Published in ICME 2019
链接:https://arxiv.org/abs/1908.07810

【19】 Dialog State Tracking with Reinforced Data Augmentation
标题:使用增强数据增强的对话状态跟踪
作者: Yichun Yin, Qun Liu
链接:https://arxiv.org/abs/1908.07795

【20】 Predict Emoji Combination with Retrieval Strategy
标题:基于检索策略的Emoji组合预测
作者: Weitsung Lin, Tianhuang Su
备注:4 pages, 2 figures, published in anlp.jp 2019
链接:https://arxiv.org/abs/1908.07761

【21】 On the Robustness of Unsupervised and Semi-supervised Cross-lingual Word Embedding Learning
标题:无监督和半监督跨语言单词嵌入学习的鲁棒性研究
作者: Yerai Doval, Steven Schockaert
链接:https://arxiv.org/abs/1908.07742

【22】 Restricted Recurrent Neural Networks
标题:受限递归神经网络
作者: Enmao Diao, Vahid Tarokh
链接:https://arxiv.org/abs/1908.07724

【23】 Fine-tuning BERT for Joint Entity and Relation Extraction in Chinese Medical Text
标题:中文医学文本中关节实体和关系提取的微调BERT
作者: Kui Xue, Ping He
备注:8 pages, 2 figures, submitted to BIBM 2019
链接:https://arxiv.org/abs/1908.07721

【24】 Copy-Enhanced Heterogeneous Information Learning for Dialogue State Tracking
标题:用于对话状态跟踪的副本增强的异构信息学习
作者: Qingbin Liu, Jun Zhao
链接:https://arxiv.org/abs/1908.07705

【25】 Latent Relation Language Models
标题:潜在关系语言模型
作者: Hiroaki Hayashi, Graham Neubig
链接:https://arxiv.org/abs/1908.07690

【26】 Improving Neural Machine Translation with Pre-trained Representation
标题:用预训练表示改进神经机器翻译
作者: Rongxiang Weng, Jiajun Chen
链接:https://arxiv.org/abs/1908.07688

【27】 MoEL: Mixture of Empathetic Listeners
标题:莫尔:感同身受的听众的混合体
作者: Zhaojiang Lin, Pascale Fung
备注:Accepted by EMNLP2019
链接:https://arxiv.org/abs/1908.07687

【28】 Learning document embeddings along with their uncertainties
标题:学习文档嵌入及其不确定性
作者: Santosh Kesiraju, Suryakanth V Gangashetty
链接:https://arxiv.org/abs/1908.07599

【29】 From Text to Sound: A Preliminary Study on Retrieving Sound Effects to Radio Stories
标题:从文本到声音:广播故事音效检索初探
作者: Songwei Ge, Jin Zhou
备注:In the Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2019)
链接:https://arxiv.org/abs/1908.07590

【30】 Phrase Localization Without Paired Training Examples
标题:没有成对训练示例的短语本地化
作者: Josiah Wang, Lucia Specia
备注:Accepted for oral presentation at the IEEE/CVF International Conference on Computer Vision (ICCV) 2019
链接:https://arxiv.org/abs/1908.07553

翻译:腾讯翻译君

上一篇 下一篇

猜你喜欢

热点阅读