tensorflow笔记:6.1 输入手写数字图片识别

2019-08-09  本文已影响0人  九除以三还是三哦
#coding:utf-8
#版本信息:ubuntu18.04  python3.6.8  tensorflow 1.14.0
#作者:九除以三还是三哦  如有错误,欢迎评论指正!!
import tensorflow as tf
import numpy as np
from PIL import Image
import mnist_backward
import mnist_forward

def restore_model(testPicArr):
    #利用tf.Graph()复现之前定义的计算图
    with tf.Graph().as_default() as tg:
        x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
        #调用mnist_forward文件中的前向传播过程forword()函数
        y = mnist_forward.forward(x, None)
        #得到概率最大的预测值
        preValue = tf.argmax(y, 1)

        #实例化具有滑动平均的saver对象
        variable_averages = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        with tf.Session() as sess:
            #通过ckpt获取最新保存的模型
            ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
        
                preValue = sess.run(preValue, feed_dict={x:testPicArr})
                return preValue
            else:
                print("No checkpoint file found")
                return -1

#预处理,包括resize,转变灰度图,二值化
def pre_pic(picName):
    img = Image.open(picName)
    reIm = img.resize((28,28), Image.ANTIALIAS)
    im_arr = np.array(reIm.convert('L'))
    #对图片做二值化处理(这样以滤掉噪声,另外调试中可适当调节阈值)
    threshold = 50
    #模型的要求是黑底白字,但输入的图是白底黑字,所以需要对每个像素点的值改为255减去原值以得到互补的反色。
    for i in range(28):
        for j in range(28):
            im_arr[i][j] = 255 - im_arr[i][j]
            if (im_arr[i][j] < threshold):
                im_arr[i][j] = 0
            else: im_arr[i][j] = 255
    #把图片形状拉成1行784列,并把值变为浮点型(因为要求像素点是0-1 之间的浮点数)
    nm_arr = im_arr.reshape([1, 784])
    nm_arr = nm_arr.astype(np.float32)
    #接着让现有的RGB图从0-255之间的数变为0-1之间的浮点数
    img_ready = np.multiply(nm_arr, 1.0/255.0)

    return img_ready

def application():
    #输入要识别的几张图片
    testNum = int(input("input the number of test pictures:"))
    for i in range(testNum):
        #给出待识别图片的路径和名称
        testPic = input("the path of test picture:")
        #图片预处理
        testPicArr = pre_pic(testPic)
        #获取预测结果
        preValue = restore_model(testPicArr)
        print ("The prediction number is:", preValue)

def main():
    application()

if __name__ == '__main__':
    main()
数字识别1.png
数字识别2.png
上一篇 下一篇

猜你喜欢

热点阅读