tensorflow笔记:6.1 输入手写数字图片识别
2019-08-09 本文已影响0人
九除以三还是三哦
- 测试过的代码 mnist_app.py
#coding:utf-8
#版本信息:ubuntu18.04 python3.6.8 tensorflow 1.14.0
#作者:九除以三还是三哦 如有错误,欢迎评论指正!!
import tensorflow as tf
import numpy as np
from PIL import Image
import mnist_backward
import mnist_forward
def restore_model(testPicArr):
#利用tf.Graph()复现之前定义的计算图
with tf.Graph().as_default() as tg:
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
#调用mnist_forward文件中的前向传播过程forword()函数
y = mnist_forward.forward(x, None)
#得到概率最大的预测值
preValue = tf.argmax(y, 1)
#实例化具有滑动平均的saver对象
variable_averages = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
with tf.Session() as sess:
#通过ckpt获取最新保存的模型
ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
preValue = sess.run(preValue, feed_dict={x:testPicArr})
return preValue
else:
print("No checkpoint file found")
return -1
#预处理,包括resize,转变灰度图,二值化
def pre_pic(picName):
img = Image.open(picName)
reIm = img.resize((28,28), Image.ANTIALIAS)
im_arr = np.array(reIm.convert('L'))
#对图片做二值化处理(这样以滤掉噪声,另外调试中可适当调节阈值)
threshold = 50
#模型的要求是黑底白字,但输入的图是白底黑字,所以需要对每个像素点的值改为255减去原值以得到互补的反色。
for i in range(28):
for j in range(28):
im_arr[i][j] = 255 - im_arr[i][j]
if (im_arr[i][j] < threshold):
im_arr[i][j] = 0
else: im_arr[i][j] = 255
#把图片形状拉成1行784列,并把值变为浮点型(因为要求像素点是0-1 之间的浮点数)
nm_arr = im_arr.reshape([1, 784])
nm_arr = nm_arr.astype(np.float32)
#接着让现有的RGB图从0-255之间的数变为0-1之间的浮点数
img_ready = np.multiply(nm_arr, 1.0/255.0)
return img_ready
def application():
#输入要识别的几张图片
testNum = int(input("input the number of test pictures:"))
for i in range(testNum):
#给出待识别图片的路径和名称
testPic = input("the path of test picture:")
#图片预处理
testPicArr = pre_pic(testPic)
#获取预测结果
preValue = restore_model(testPicArr)
print ("The prediction number is:", preValue)
def main():
application()
if __name__ == '__main__':
main()
-
测试结果
老师给的图片识别效果是可以的,但是自己手写的识别不好,几乎都不对...
运行.png

