java线程池

2018-10-28  本文已影响0人  CoderZzbJohn

1.线程池活跃线程。
2.阻塞队列。
3.增加的线程。
4.拒绝策略。

1.ctl。线程池中用一个AtomicInteger表示线程池状态和活动线程数。高三位表示线程池状态。后28位表示线程个数。

线程状态:
1.  runing:-1。正在运行中
2.  shutdown 0 。 线程池已关闭,已加入线程池中的任务会继续进行。
3.  stop  1。 线程池中任务立即停止。
4.  tidying
5   terminated
   1.线程池刚初始化,线程数< corePoolSize时。这时候来了任务,直接初始化线程,将任务分配给该线程。
    2.当线程数=corePoolSize时。这时候来了任务,加入到队列,由线程自取。线程一直在消费任务
    3.当队列已经满了且线程数<maxnumPoolSize,则创建新的线程,并将任务直接分配给该线程。
    4.线程数=maxPoolSize,将任务加入队列。若队列已满,执行拒绝策略。
        int c = ctl.get(); 
        //  判断如果当前线程数小于corePoolSize
        if (workerCountOf(c) < corePoolSize) {
            // true:corePoolSize    false:maxnumPoolSize
            // 增加一个线程处理当前任务
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }

        // 线程池正在运行中,将任务加入到队列。
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            //若线程池挂了,将任务移除队列,执行拒绝策略。
            if (! isRunning(recheck) && remove(command))
                reject(command);
            // 防止任务都加入了队列,但是线程全都关闭了。感觉一般不会出现这种可能
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        //新创建线程处理任务,线程个数不能超过maxnumPoolSize,否则拒绝任务
        else if (!addWorker(command, false))
            reject(command);
//增加工作线程
// core    true:与corePoolSize相比   false:与maxnumPoolSize相比较
 private boolean addWorker(Runnable firstTask, boolean core) {
        retry:

        //这一大段判断线程池当前状态能否新加线程
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                // 整个类的全局锁。关闭线程池,增加Worker等都需要获取锁。
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        //记录线程池中线程数最多的个数
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    // 添加线程成功。调用线程run方法
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }
final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            //直接处理firstTask。若firstTask为null,到队列中取任务。
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    //钩子方法。由子类具体实现
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                         //钩子方法。由子类具体实现
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            //  若task为null,关闭线程。
            processWorkerExit(w, completedAbruptly);
        }
    }
该方法一共三种情况。
1.阻塞直到任务返回。corePoolSize内的线程默认不会回收。但是可以设置。
2.超时返回。超过keepAliveTime没有任务,返回。
3.返回值为null时,关闭线程。 返回null情况:
        3.1.线程池线程个数>maxnumPoolSize,开发者调用了setMaxnumPoolSize。
        3.2.线程池状态为stop。或者状态为shutdown并且任务队列为空。

 /**
     * Performs blocking or timed wait for a task, depending on
     * current configuration settings, or returns null if this worker
     * must exit because of any of:
     * 1. There are more than maximumPoolSize workers (due to
     *    a call to setMaximumPoolSize).
     * 2. The pool is stopped.
     * 3. The pool is shutdown and the queue is empty.
     * 4. This worker timed out waiting for a task, and timed-out
     *    workers are subject to termination (that is,
     *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
     *    both before and after the timed wait, and if the queue is
     *    non-empty, this worker is not the last thread in the pool.
     *
     * @return task, or null if the worker must exit, in which case
     *         workerCount is decremented
     */
private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?
         //阻塞,直到获取到任务。 BlockQueue,阻塞队列。
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            // 是否允许核心线程数以内的线程回收  ||  线程数超过核心线程 
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                // 线程数超过核心线程数,且已超时,timeOut==true
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

拒绝策略:

//用当前线程来执行任务
public static class CallerRunsPolicy implements RejectedExecutionHandler {
      
        public CallerRunsPolicy() { }

        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                r.run();
            }
        }
    }

   // 只要队列已满。抛异常。Default
    public static class AbortPolicy implements RejectedExecutionHandler {
      
        public AbortPolicy() { }

     
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }
    }

  //不做任何操作
    public static class DiscardPolicy implements RejectedExecutionHandler {
               public DiscardPolicy() { }

        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        }
    }

 // 将队列里等待时间最长的去除,换成当前任务。
    public static class DiscardOldestPolicy implements RejectedExecutionHandler {
      
        public DiscardOldestPolicy() { }

       public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                e.getQueue().poll();
                e.execute(r);
            }
        }
    }

Executors:

// 线程数固定在 nThreads。 无界队列。这n个线程永远不会被销毁,除非线程池销毁了。
    public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }

// 单个线程。无界队列。线程创建了之后不会被销毁。
    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

// 只要有任务,没有空闲线程。就创建线程。创建的线程,如果60s内没有新任务,则销毁线程。
  public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

Executor:
ExecutorService:
AbstractExecutorService:
FutureTask:

线程池corePoolSize数量设置建议:

1.CPU密集型应用

CPU密集的意思是任务需要进行大量复杂的运算,几乎没有阻塞,需要CPU长时间高速运行。

一般公式:corePoolSize=CPU核数+1个线程。JVM可运行的CPU核数可以通过Runtime.getRuntime().availableProcessors()查看。

2.IO密集型应用

IO密集型任务会涉及到很多的磁盘读写或网络传输,线程花费更多的时间在IO阻塞上,而不是CPU运算。一般的业务应用都属于IO密集型。

参考公式:最佳线程数=CPU数/(1-阻塞系数); 阻塞系数=线程等待时间/(线程等待时间+CPU处理时间) 。

IO密集型任务的CPU处理时间往往远小于线程等待时间,所以阻塞系数一般认为在0.8-0.9之间,以4核单槽CPU为例,corePoolSize可设置为 4/(1-0.9)=40。当然具体的设置还是要根据机器实际运行中的各项指标而定。

上述设置建议是希望一个线程池能最大的发挥CPU资源,实际上是以机器为维度的,如果应用需要几个线程池同时执行,建议值就对应这些线程池的核心线程总数。另外,实际设置的线程数只需要满足使用即可(例如设10、20个,任务的性能和运行时间就能被接受了),不用都设置的要占满CPU资源一样。

上一篇下一篇

猜你喜欢

热点阅读