计算机网络整理笔记视觉艺术

计算机网络第4章(网络层)

2020-10-26  本文已影响0人  BloothOfYouth

计算机网络微课堂的笔记整理
笔记也放到了我的github我的gitee

4.1、网络层概述

简介

image-20201017134630948

这些异构型网络N1~N7如果只是需要各自内部通信,他们只要实现各自的物理层和数据链路层即可

但是如果要将这些异构型网络互连起来,形成一个更大的互联网,就需要实现网络层设备路由器

有时为了简单起见,可以不用画出这些网络,图中N1~N7,而将他们看做是一条链路即可

image-20201017142545630

补充 网络层(网际层)除了 IP协议外,还有之前介绍过的地址解析协议ARP,还有网际控制报文协议ICMP网际组管理协议IGMP

总结

image-20201017140623851

4.2、网络层提供的两种服务

面向连接的虚电路服务

一种观点:让网络负责可靠交付

image-20201017141425892

发送方 发送给 接收方 的所有分组都沿着同一条虚电路传送

  • 虚电路表示这只是一条逻辑上的连接,分组都沿着这条逻辑连接按照存储转发方式传送,而并不是真正建立了一条物理连接。
  • 请注意,电路交换的电话通信是先建立了一条真正的连接。
  • 因此分组交换的虚连接和电路交换的连接只是类似,但并不完全一样

无连接的数据报服务

另一种观点:网络提供数据报服务

image-20201017141851030

发送方 发送给 接收方 的分组可能沿着不同路径传送

尽最大努力交付

  • 如果主机(即端系统)中的进程之间的通信需要是可靠的,那么就由网络的主机中的运输层负责可靠交付(包括差错处理、流量控制等)
  • 采用这种设计思路的好处是:网络的造价大大降低,运行方式灵活,能够适应多种应用。
  • 互连网能够发展到今日的规模,充分证明了当初采用这种设计思路的正确性。

虚电路服务与数据报服务的对比

对比的方面 虚电路服务 数据报服务
思路 可靠通信应当由网络来保证 可靠通信应当由用户主机来保证
连接的建立 必须有 不需要
终点地址 仅在连接建立阶段使用,每个分组使用短的虚电路号 每个分组都有终点的完整地址
分组的转发 属于同一条虚电路的分组均按照同一路由进行转发 每个分组独立选择路由进行转发
当结点出故障时 所有通过出故障的结点的虚电路均不能工作 出故障的结点可能会丢失分组,一些路由可能会发生变化
分组的顺序 总是按发送顺序到达终点 到达终点时不一定按发送顺序
端到端的差错处理和流量控制 可以由网络负责,也可以由用户主机负责 由用户主机负责

4.3、IPv4

概述

image-20201017143206060

分类编制的IPv4地址

简介

image-20201017144317166

A类地址

image-20201017145210533

B类地址

image-20201017145508001

C类地址

image-20201017150204774

练习

image-20201017150543386

总结

IP 地址的指派范围

image-20201017152911541

一般不使用的特殊的 IP 地址

image-20201017152959586

IP 地址的一些重要特点

(1) IP 地址是一种分等级的地址结构。分两个等级的好处是:

(2) 实际上 IP 地址是标志一个主机(或路由器)和一条链路的接口

(3) 用转发器或网桥连接起来的若干个局域网仍为一个网络,因此这些局域网都具有同样的网络号 net-id。

(4) 所有分配到网络号 net-id 的网络,无论是范围很小的局域网,还是可能覆盖很大地理范围的广域网,都是平等的。

划分子网的IPv4地址

为什么要划分子网

在 ARPANET 的早期,IP 地址的设计确实不够合理:

image-20201017154645198

如果想要将原来的网络划分成三个独立的网路

image-20201017154852896

所以是否可以从主机号部分借用一部分作为子网号

image-20201017155026814

但是如果未在图中标记子网号部分,那么我们和计算机又如何知道分类地址中主机号有多少比特被用作子网号了呢?

所以就有了划分子网的工具:子网掩码

  • 从 1985 年起在 IP 地址中又增加了一个“子网号字段”,使两级的 IP 地址变成为三级的 IP 地址
  • 这种做法叫做划分子网 (subnetting) 。
  • 划分子网已成为互联网的正式标准协议。

如何划分子网

基本思路

image-20201017155930011

划分为三个子网后对外仍是一个网络

image-20201017160116239
  • 优点
1.  减少了 IP 地址的浪费
    
    
2.  使网络的组织更加灵活
    
    
3.  更便于维护和管理
  • 划分子网纯属一个单位内部的事情,对外部网络透明,对外仍然表现为没有划分子网的一个网络。

子网掩码

image-20201017160252066

(IP 地址) AND (子网掩码) = 网络地址 重要,下面很多相关知识都会用到

举例

例子1

image-20201017161651058

例子2

image-20201017161719339

默认子网掩码

image-20201017162807076

总结

image-20201017162938612
  • 子网掩码是一个网络或一个子网的重要属性。
  • 路由器在和相邻路由器交换路由信息时,必须把自己所在网络(或子网)的子网掩码告诉相邻路由器。
  • 路由器的路由表中的每一个项目,除了要给出目的网络地址外,还必须同时给出该网络的子网掩码。
  • 若一个路由器连接在两个子网上,就拥有两个网络地址和两个子网掩码。

无分类编址的IPv4地址

为什么使用无分类编址

无分类域间路由选择 CIDR (Classless Inter-Domain Routing)。

image-20201017164031532

CIDR 最主要的特点

  • CIDR使用各种长度的“网络前缀”(network-prefix)来代替分类地址中的网络号和子网号。
  • IP 地址从三级编址(使用子网掩码)又回到了两级编址

如何使用无分类编址

image-20201017165037268

举例

image-20201017165113442

路由聚合(构造超网)

image-20201017165615915

总结

image-20201020152711493

IPv4地址的应用规划

给定一个IPv4地址快,如何将其划分成几个更小的地址块,并将这些地址块分配给互联网中不同网络,进而可以给各网络中的主机和路由器接口分配IPv4地址

定长的子网掩码FLSM(Fixed Length Subnet Mask)

image-20201018143550103

划分子网的IPv4就是定长的子网掩码

举例

image-20201018140809079 image-20201018140916631 image-20201020152900871

通过上面步骤分析,就可以从子网1 ~ 8中任选5个分配给左图中的N1 ~ N5

采用定长的子网掩码划分,只能划分出2^n个子网,其中n是从主机号部分借用的用来作为子网号的比特数量,每个子网所分配的IP地址数量相同

但是也因为每个子网所分配的IP地址数量相同,不够灵活,容易造成IP地址的浪费

变长的子网掩码VLSM(Variable Length Subnet Mask)

image-20201018143632352

无分类编址的IPv4就是变长的子网掩码

举例

image-20201018142333145 image-20201018143344440

4.4、IP数据报的发送和转发过程

image-20201018144335297

举例

image-20201018151314019 image-20201018150151171

源主机如何知道目的主机是否与自己在同一个网络中,是直接交付,还是间接交付?

image-20201018150223497

可以通过目的地址IP源地址的子网掩码进行逻辑与运算得到目的网络地址

  • 如果目的网络地址源网络地址 相同,就是在同一个网络中,属于直接交付
  • 如果目的网络地址源网络地址 不相同,就不在同一个网络中,属于间接交付,传输给主机所在网络的默认网关(路由器——下图会讲解),由默认网关帮忙转发

主机C如何知道路由器R的存在?

image-20201018145501063

用户为了让本网络中的主机能和其他网络中的主机进行通信,就必须给其指定本网络的一个路由器的接口,由该路由器帮忙进行转发,所指定的路由器,也被称为默认网关

例如。路由器的接口0的IP地址192.168.0.128做为左边网络的默认网关

image-20201018150029179

主机A会将该IP数据报传输给自己的默认网关,也就是图中所示的路由器接口0

路由器收到IP数据报后如何转发?

假设IP数据报首部没有出错,路由器取出IP数据报首部各地址字段的值

image-20201018151108989

接下来路由器对该IP数据报进行查表转发

image-20201018151528027

逐条检查路由条目,将目的地址与路由条目中的地址掩码进行逻辑与运算得到目的网络地址,然后与路由条目中的目的网络进行比较,如果相同,则这条路由条目就是匹配的路由条目,按照它的下一条指示,图中所示的也就是接口1转发该IP数据报

image-20201018151956275

路由器是隔离广播域的

image-20201018152040610

4.5、静态路由配置及其可能产生的路由环路问题

概念

image-20201018155702081

多种情况举例

静态路由配置

举例

image-20201018160349375

默认路由

举例

默认路由可以被所有网络匹配,但路由匹配有优先级,默认路由是优先级最低的

image-20201018160906284

特定主机路由

举例

有时候,我们可以给路由器添加针对某个主机的特定主机路由条目

一般用于网络管理人员对网络的管理和测试

image-20201018161440257

多条路由可选,匹配路由最具体的

静态路由配置错误导致路由环路

举例

image-20201018161542579

假设将R2的路由表中第三条目录配置错了下一跳

这导致R2和R3之间产生了路由环路

image-20201020153154773

聚合了不存在的网络而导致路由环路

举例

正常情况

image-20201018162333671 image-20201018162759562

错误情况

image-20201018163323343

解决方法

image-20201018163933715 image-20201018164453398

黑洞路由的下一跳为null0,这是路由器内部的虚拟接口,IP数据报进入它后就被丢弃

网络故障而导致路由环路

举例

image-20201018164811811 image-20201018164913684

解决方法

添加故障的网络为黑洞路由

image-20201018165122023 image-20201018165153517

假设。一段时间后故障网络恢复了

R1又自动地得出了其接口0的直连网络的路由条目

针对该网络的黑洞网络会自动失效

image-20201018165328319

如果又故障

则生效该网络的黑洞网络

image-20201018165521938

总结

image-20201018165709294

4.6、路由选择协议

概述

image-20201019134827343

因特网所采用的路由选择协议的主要特点

image-20201019134946971

因特网采用分层次的路由选择协议

image-20201019135122326

自治系统之间的路由选择简称为域间路由选择,自治系统内部的路由选择简称为域内路由选择

image-20201019135328925

域间路由选择使用外部网关协议EGP这个类别的路由选择协议

域内路由选择使用内部网关协议IGP这个类别的路由选择协议

网关协议的名称可称为路由协议

常见的路由选择协议

image-20201019140009740

路由器的基本结构

路由器是一种具有多个输入端口,和输出端口的专用计算机,其任务是转发分组

image-20201019140234652

路由器结构可划分为两大部分:

1、分组转发部分

由三部分构成

路由器的各端口还会有输入缓冲区和输出缓冲区

  • 输入缓冲区用来暂存新进入路由器但还来不及处理的分组
  • 输出缓冲区用来暂存已经处理完毕但还来不及发送的分组
image-20201019143040253

路由器的端口一般都具有输入和输出功能,这些实例分出了输入端口和输出端口是更好演示路由基本工作过程

2、路由选择部分

路由信息协议RIP

image-20201019144915687 image-20201019145247606

RIP的基本工作过程

举例

image-20201019145510947

RIP的路由条目的更新规则

举例1

image-20201019145627339

路由器C的表到达各目的网络的下一条都记为问号,可以理解为路由器D并不需要关心路由器C的这些内容

假设路由器C的RIP更新报文发送周期到了,则路由器C将自己路由表中的相关路由信息封装到RIP更新报文中发送给路由器D

image-20201019150120900

路由器C能到达这些网络,说明路由器C的相邻路由器也能到达,只是比路由器C的距离大1,于是根据距离的对比,路由器D更新自己的路由表

image-20201019150412666

举例2

image-20201019150525711

RIP存在“坏消息传播得慢”的问题

image-20201019151041492 image-20201019151135255 image-20201019151332767

解决方法

image-20201019151639181

但是,这些方法也不能完全解决“坏消息传播得慢”的问题,这是距离向量的本质决定

总结

image-20201019152526098

RIP 协议的优缺点

优点:

  1. 实现简单,开销较小。

缺点:

  1. RIP 限制了网络的规模,它能使用的最大距离为 15(16 表示不可达)。
  1. 路由器之间交换的路由信息是路由器中的完整路由表,因而随着网络规模的扩大,开销也就增加。
  1. “坏消息传播得慢”,使更新过程的收敛时间过长。

开放最短路径优先OSPF

开放最短路径优先 OSPF (Open Shortest Path First)

注意:OSPF 只是一个协议的名字,它并不表示其他的路由选择协议不是“最短路径优先”。

概念

image-20201019161841695

问候(Hello)分组

image-20201019161653875

IP数据报首部中协议号字段的取值应为89,来表明IP数据报的数据载荷为OSPF分组

发送链路状态通告LSA

image-20201019162341151

洪泛法有点类似于广播,就是从一个接口进来,从其他剩余所有接口出去

链路状态数据库同步

image-20201019162933483

使用SPF算法计算出各自路由器到达其他路由器的最短路径

image-20201019163148068

OSPF五种分组类型

image-20201019163250129

OSPF的基本工作过程

image-20201019163746254

OSPF在多点接入网络中路由器邻居关系建立

如果不采用其他机制,将会产生大量的多播分组

image-20201019164657606

若DR出现问题,则由BDR顶替DR

为了使OSPF能够用于规模很大的网络,OSPF把一个自治系统再划分为若干个更小的范围,叫做区域(Area)

image-20201019170100568

总结

image-20201019170217622

边界网关协议BGP

BGP(Border Gateway Protocol) 是不同自治系统的路由器之间交换路由信息的协议

image-20201019191438399 image-20201019191718506 image-20201019191836397 image-20201019192031087 image-20201019192059962

总结

image-20201020153832824

直接封装RIP、OSPF和BGP报文的协议

image-20201019192800829

4.7、IPv4数据报的首部格式

各字段的作用

image-20201019205931748

图中的每一行都由32个比特(也就是4个字节)构成,每个小格子称为字段或者域,每个字段或某些字段的组合用来表达IP协议的相关功能

image-20201019211719880

IP数据报的首部长度一定是4字节的整数倍

因为首部中的可选字段的长度从1个字节到40个字节不等,那么,当20字节的固定部分加上1到40个字节长度不等的可变部分,会造成首部长度不是4字节整数倍时,就用取值为全0的填充字段填充相应个字节,以确保IP数据报的首部长度是4字节的整数倍

image-20201019212617006 image-20201019220435415

对IPv4数据报进行分片

image-20201019221021157

现在假定分片2的IP数据报经过某个网络时还需要进行分片

image-20201019221246870 image-20201019222512112 image-20201019222552444 image-20201019222729797 image-20201019223101434

总结

image-20201020154031295

4.8、网际控制报文协议ICMP

概念

架构IP网络时需要特别注意两点:

而ICMP就是实现这些问题的协议

ICMP的主要功能包括:

有了这些功能以后,就可以获得网络是否正常,设置是否有误以及设备有何异常等信息,从而便于进行网络上的问题诊断

image-20201019232539898

ICMP 不是高层协议(看起来好像是高层协议,因为 ICMP 报文是装在 IP 数据报中,作为其中的数据部分),而是 IP 层的协议

ICMP 报文的格式

image-20201020001035813

ICMP差错报告报文

终点不可达

image-20201019230838587

源点抑制

image-20201019231022291

时间超过

image-20201019231230798

参数问题

image-20201019231355471

改变路由(重定向)

image-20201019231553990

不应发送ICMP差错报告报文情况

image-20201019231733673

ICMP应用举例

分组网间探测PING(Packet InterNet Groper)

image-20201019233817921

跟踪路由(traceroute)

image-20201019234123026

tracert命令的实现原理

image-20201019234718107 image-20201019234741268 image-20201019234758693

总结

image-20201019234909146

4.9、虚拟专用网VPN与网络地址转换NAT

虚拟专用网VPN(Virtual Private Network)

image-20201019235534728 image-20201019235631474 image-20201019235718010

上图是因特网数字分配机构IANA官网查看IPv4地址空间中特殊地址的分配方案

用粉红色标出来的地址就是无需申请的、可自由分配的专用地址,或称私有地址

image-20201020000136443

私有地址只能用于一个机构的内部通信,而不能用于和因特网上的主机通信

私有地址只能用作本地地址而不能用作全球地址

因特网中所有路由器对目的地址是私有地址的IP数据报一律不进行转发

本地地址与全球地址

  • 本地地址——仅在机构内部使用的 IP 地址,可以由本机构自行分配,而不需要向互联网的管理机构申请。
  • 全球地址——全球唯一的 IP 地址,必须向互联网的管理机构申请。
  • 问题:在内部使用的本地地址就有可能和互联网中某个 IP 地址重合,这样就会出现地址的二义性问题。

所以部门A和部门B至少需要一个 路由器具有合法的全球IP地址,这样各自的专用网才能利用公用的因特网进行通信

image-20201020000618797

部门A向部门B发送数据流程

image-20201020001107425

两个专用网内的主机间发送的数据报是通过了公用的因特网,但在效果上就好像是在本机构的专用网上传送一样

数据报在因特网中可能要经过多个网络和路由器,但从逻辑上看,R1和R2之间好像是一条直通的点对点链路

image-20201020001528569

因此也被称为IP隧道技术

image-20201020001935801

网络地址转换NAT(Network Address Translation)

image-20201020002020607

举例

image-20201020002439942

使用私有地址的主机,如何才能与因特网上使用全球IP地址的主机进行通信?

这需要在专用网络连接到因特网的路由器上安装NAT软件

image-20201020002734192

专有NAT软件的路由器叫做NAT路由器

它至少有一个有效的外部全球IP地址

这样,所有使用私有地址的主机在和外界通信时,都要在NAT路由器上将其私有地址转换为全球IP地址

假设,使用私有地址的主机要给因特网上使用全球IP地址的另一台主机发送IP数据报

image-20201020003238729

因特网上的这台主机给源主机发回数据报

image-20201020003411024

当专用网中的这两台使用私有地址的主机都要给因特网使用全球地址的另一台主机发送数据报时,在NAT路由器的NAT转换表中就会产生两条记录,分别记录两个私有地址与全球地址的对应关系

image-20201020003658349

这种基本转换存在一个问题

image-20201020003733863

解决方法

image-20201020003840584

我们现在用的很多家用路由器都是这种NART路由器

内网主机与外网主机的通信,是否能由外网主机首先发起?

否定

image-20201020004159360 image-20201020004312942

总结

image-20201020154403617
上一篇 下一篇

猜你喜欢

热点阅读