数仓利器-Hive高频函数合集

2020-09-12  本文已影响0人  Bloo_m

前言

Hive是数仓建设使用频率最高的一项技术,基于各种业务需求,使用功能函数会为我们的开发提高了很多效率。本篇是基于笔者在日常开发中使用频率较高的函数做一次总结(同时也会给出一些业务场景帮助读者理解),同时也是面试中经常会被问到的函数。如有遗漏,欢迎各位读者一起交流沟通并补充进来~;
另关注公众号"初学大数据"
后台回复“大数据”可获取更多关于大数据资料

数据准备

数据集

user1,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,10,2020-09-12 02:20:02,2020-09-12
user1,https://blog.csdn.net/qq_28680977/article/details/108298276?k1=v1&k2=v2#Ref1,2,2020-09-11 11:20:12,2020-09-11
user1,https://blog.csdn.net/qq_28680977/article/details/108295053?k1=v1&k2=v2#Ref1,4,2020-09-10 08:19:22,2020-09-10
user1,https://blog.csdn.net/qq_28680977/article/details/108460523?k1=v1&k2=v2#Ref1,5,2020-08-12 19:20:22,2020-08-12
user2,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,29,2020-04-04 12:23:22,2020-04-04
user2,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,30,2020-05-15 12:34:23,2020-05-15
user2,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,30,2020-05-15 13:34:23,2020-05-15
user2,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,19,2020-05-16 19:03:32,2020-05-16
user2,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,10,2020-05-17 06:20:22,2020-05-17
user3,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,43,2020-04-12 08:02:22,2020-04-12
user3,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,5,2020-08-02 08:10:22,2020-08-02
user3,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,6,2020-08-02 10:10:22,2020-08-02
user3,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,50,2020-08-12 12:23:22,2020-08-12
user4,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,10,2020-04-12 11:20:22,2020-04-12
user4,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,30,2020-03-12 10:20:22,2020-03-12
user4,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,20,2020-02-12 20:26:43,2020-02-12
user2,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,10,2020-04-12 19:12:36,2020-04-12
user2,https://blog.csdn.net/qq_28680977/article/details/108161655?k1=v1&k2=v2#Ref1,40,2020-05-12 18:24:31,2020-05-12

建表语句

create table wedw_tmp.tmp_url_info(
 user_id string comment "用户id",
 visit_url string comment "访问url",
 visit_cnt int comment "浏览次数/pv",
visit_time timestamp comment "浏览时间",
 visit_date string comment "浏览日期"
)
row format delimited
fields terminated by ','
stored as textfile;

窗口函数

row_number:使用频率 ★★★★★

row_number函数通常用于分组统计组内的排名,然后进行后续的逻辑处理。

注意:当遇到相同排名的时候,不会生成同样的序号,且中间不会空位

-- 统计每个用户每天最近一次访问记录
select 
  user_id,
  visit_time,
  visit_cnt
from 
(
  select
    *,
   row_number() over(partition by user_id,visit_date order by visit_time desc) as rank
  from wedw_tmp.tmp_url_info
)t
where rank=1
order by user_id,visit_time
+----------+------------------------+------------+--+
| user_id  |       visit_time       | visit_cnt  |
+----------+------------------------+------------+--+
| user1    | 2020-08-12 19:20:22.0  | 5          |
| user1    | 2020-09-10 08:19:22.0  | 4          |
| user1    | 2020-09-11 11:20:12.0  | 2          |
| user1    | 2020-09-12 02:20:02.0  | 10         |
| user2    | 2020-04-04 12:23:22.0  | 29         |
| user2    | 2020-04-12 19:12:36.0  | 10         |
| user2    | 2020-05-12 18:24:31.0  | 40         |
| user2    | 2020-05-15 13:34:23.0  | 30         |  --该用户同一天访问了多次,但只取了最新一次访问记录
| user2    | 2020-05-16 19:03:32.0  | 19         |
| user2    | 2020-05-17 06:20:22.0  | 10         |
| user3    | 2020-04-12 08:02:22.0  | 43         |
| user3    | 2020-08-02 10:10:22.0  | 6          |
| user3    | 2020-08-12 12:23:22.0  | 50         |
| user4    | 2020-02-12 20:26:43.0  | 20         |
| user4    | 2020-03-12 10:20:22.0  | 30         |
| user4    | 2020-04-12 11:20:22.0  | 10         |
+----------+------------------------+------------+--+

rank :使用频率 ★★★★

和row_number功能一样,都是分组内统计排名,但是当出现同样排名的时候,中间会出现空位。这里给一个例子就可以很容易理解了

select 
  user_id,
  visit_time,
  visit_date,
  rank() over(partition by user_id order by visit_date desc) as rank --每个用户按照访问时间倒排,通常用于统计用户最近一天的访问记录
from wedw_tmp.tmp_url_info
order by user_id,rank
+----------+------------------------+-------------+-------+--+
| user_id  |       visit_time       | visit_date  | rank  |
+----------+------------------------+-------------+-------+--+
| user1    | 2020-09-12 02:20:02.0  | 2020-09-12  | 1     |
| user1    | 2020-09-12 02:20:02.0  | 2020-09-12  | 1     | --同一天访问了两次,9月11号访问排名第三
| user1    | 2020-09-11 11:20:12.0  | 2020-09-11  | 3     |
| user1    | 2020-09-10 08:19:22.0  | 2020-09-10  | 4     |
| user1    | 2020-08-12 19:20:22.0  | 2020-08-12  | 5     |
| user2    | 2020-05-17 06:20:22.0  | 2020-05-17  | 1     |
| user2    | 2020-05-16 19:03:32.0  | 2020-05-16  | 2     |
| user2    | 2020-05-15 12:34:23.0  | 2020-05-15  | 3     |
| user2    | 2020-05-15 13:34:23.0  | 2020-05-15  | 3     |
| user2    | 2020-05-12 18:24:31.0  | 2020-05-12  | 5     |
| user2    | 2020-04-12 19:12:36.0  | 2020-04-12  | 6     |
| user2    | 2020-04-04 12:23:22.0  | 2020-04-04  | 7     |
| user3    | 2020-08-12 12:23:22.0  | 2020-08-12  | 1     |
| user3    | 2020-08-02 08:10:22.0  | 2020-08-02  | 2     |
| user3    | 2020-08-02 10:10:22.0  | 2020-08-02  | 2     |
| user3    | 2020-04-12 08:02:22.0  | 2020-04-12  | 4     |
| user4    | 2020-04-12 11:20:22.0  | 2020-04-12  | 1     |
| user4    | 2020-03-12 10:20:22.0  | 2020-03-12  | 2     |
| user4    | 2020-02-12 20:26:43.0  | 2020-02-12  | 3     |
+----------+------------------------+-------------+-------+--+

dense_rank:使用频率 ★★★★

和row_number以及rank功能一样,都是分组排名,但是该排名如果出现同次序的话,中间不会留下空位

--还是以rank的sql为例子
select 
  user_id,
  visit_time,
  visit_date,
  dense_rank() over(partition by user_id order by visit_date desc) as rank 
from wedw_tmp.tmp_url_info
order by user_id,rank
+----------+------------------------+-------------+-------+--+
| user_id  |       visit_time       | visit_date  | rank  |
+----------+------------------------+-------------+-------+--+
| user1    | 2020-09-12 02:20:02.0  | 2020-09-12  | 1     |
| user1    | 2020-09-12 02:20:02.0  | 2020-09-12  | 1     |
| user1    | 2020-09-11 11:20:12.0  | 2020-09-11  | 2     |--中间不会留下空缺
| user1    | 2020-09-10 08:19:22.0  | 2020-09-10  | 3     | 
| user1    | 2020-08-12 19:20:22.0  | 2020-08-12  | 4     |
| user2    | 2020-05-17 06:20:22.0  | 2020-05-17  | 1     |
| user2    | 2020-05-16 19:03:32.0  | 2020-05-16  | 2     |
| user2    | 2020-05-15 12:34:23.0  | 2020-05-15  | 3     |
| user2    | 2020-05-15 13:34:23.0  | 2020-05-15  | 3     |
| user2    | 2020-05-12 18:24:31.0  | 2020-05-12  | 4     |
| user2    | 2020-04-12 19:12:36.0  | 2020-04-12  | 5     |
| user2    | 2020-04-04 12:23:22.0  | 2020-04-04  | 6     |
| user3    | 2020-08-12 12:23:22.0  | 2020-08-12  | 1     |
| user3    | 2020-08-02 08:10:22.0  | 2020-08-02  | 2     |
| user3    | 2020-08-02 10:10:22.0  | 2020-08-02  | 2     |
| user3    | 2020-04-12 08:02:22.0  | 2020-04-12  | 3     |
| user4    | 2020-04-12 11:20:22.0  | 2020-04-12  | 1     |
| user4    | 2020-03-12 10:20:22.0  | 2020-03-12  | 2     |
| user4    | 2020-02-12 20:26:43.0  | 2020-02-12  | 3     |
+----------+------------------------+-------------+-------+--+

rank/dense_rank/row_number对比

相同点:都是分组排序

不同点:

  1. Row_number:即便出现相同的排序,排名也不会一致,只会进行累加;即排序次序连续,但不会出现同一排名
  2. rank:当出现相同的排序时,中间会出现一个空缺,即分组内会出现同一个排名,但是排名次序是不连续的
  3. Dense_rank:当出现相同排序时,中间不会出现空缺,即分组内可能会出现同样的次序,且排序名次是连续的

first_value:使用频率 ★★★

按照分组排序取截止到当前行的第一个值;通常用于取最新记录或者最早的记录(根据排序字段进行变通即可)

--仍然使用row_number的例子;方便读者理解
select
user_id,
visit_time,
visit_cnt,
first_value(visit_time) over(partition by user_id order by visit_date desc) as first_value_time,
row_number() over(partition by user_id order by visit_date desc) as rank
from  wedw_tmp.tmp_url_info
order by user_id,rank
1.png

last_value:使用频率 ★

按照分组排序取当前行的最后一个值;这个函数好像没啥卵用

--仍然使用row_number的例子;方便读者理解
select
user_id,
visit_time,
visit_cnt,
last_value(visit_time) over(partition by user_id order by visit_date desc) as first_value_time,
row_number() over(partition by user_id order by visit_date desc) as rank
from  wedw_tmp.tmp_url_info
order by user_id,rank
2.png

lead:使用频率 ★★

LEAD(col,n,DEFAULT)用于取窗口内往下第n行值;通常用于行值填充;或者和指定行进行差值比较

第一个参数为列名

第二个参数为往下第n行(可选),

第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)

select
user_id,
visit_time,
visit_cnt,
row_number() over(partition by user_id order by visit_date desc) as rank,
lead(visit_time,1,'1700-01-01') over(partition by user_id order by visit_date desc) as lead_time
from  wedw_tmp.tmp_url_info
order by user_id
+----------+------------------------+------------+-------+------------------------+--+
| user_id  |       visit_time       | visit_cnt  | rank  |       lead_time        |
+----------+------------------------+------------+-------+------------------------+--+
| user1    | 2020-09-12 02:20:02.0  | 10         | 1     | 2020-09-12 02:20:02.0  | --取下一行的值作为当前值
| user1    | 2020-09-12 02:20:02.0  | 10         | 2     | 2020-09-11 11:20:12.0  |
| user1    | 2020-09-11 11:20:12.0  | 2          | 3     | 2020-09-10 08:19:22.0  |
| user1    | 2020-09-10 08:19:22.0  | 4          | 4     | 2020-08-12 19:20:22.0  |
| user1    | 2020-08-12 19:20:22.0  | 5          | 5     | 1700-01-01 00:00:00.0  | --这里是最后一条记录,则取默认值
| user2    | 2020-05-17 06:20:22.0  | 10         | 1     | 2020-05-16 19:03:32.0  |
| user2    | 2020-05-16 19:03:32.0  | 19         | 2     | 2020-05-15 12:34:23.0  |
| user2    | 2020-05-15 12:34:23.0  | 30         | 3     | 2020-05-15 13:34:23.0  |
| user2    | 2020-05-15 13:34:23.0  | 30         | 4     | 2020-05-12 18:24:31.0  |
| user2    | 2020-05-12 18:24:31.0  | 40         | 5     | 2020-04-12 19:12:36.0  |
| user2    | 2020-04-12 19:12:36.0  | 10         | 6     | 2020-04-04 12:23:22.0  |
| user2    | 2020-04-04 12:23:22.0  | 29         | 7     | 1700-01-01 00:00:00.0  |
| user3    | 2020-08-12 12:23:22.0  | 50         | 1     | 2020-08-02 08:10:22.0  |
| user3    | 2020-08-02 08:10:22.0  | 5          | 2     | 2020-08-02 10:10:22.0  |
| user3    | 2020-08-02 10:10:22.0  | 6          | 3     | 2020-04-12 08:02:22.0  |
| user3    | 2020-04-12 08:02:22.0  | 43         | 4     | 1700-01-01 00:00:00.0  |
| user4    | 2020-04-12 11:20:22.0  | 10         | 1     | 2020-03-12 10:20:22.0  |
| user4    | 2020-03-12 10:20:22.0  | 30         | 2     | 2020-02-12 20:26:43.0  |
| user4    | 2020-02-12 20:26:43.0  | 20         | 3     | 1700-01-01 00:00:00.0  |
+----------+------------------------+------------+-------+------------------------+--+

lag:使用频率 ★★

和lead功能一样,但是是取上n行的值作为当前行值

select
user_id,
visit_time,
visit_cnt,
row_number() over(partition by user_id order by visit_date desc) as rank,
lag(visit_time,1,'1700-01-01') over(partition by user_id order by visit_date desc) as lead_time
from  wedw_tmp.tmp_url_info
order by user_id
3.png

集合相关

collect_set:使用频率 ★★★★★

将分组内的数据放入到一个集合中,具有去重的功能;

--统计每个用户具体哪些天访问过
select
  user_id,
  collect_set(visit_date) over(partition by user_id) as visit_date_set 
from wedw_tmp.tmp_url_info

4.png

collect_list:使用频率 ★★★★★

和collect_set一样,但是没有去重功能

select
  user_id,
  collect_set(visit_date) over(partition by user_id) as visit_date_set 
from wedw_tmp.tmp_url_info

--如下图可见,user2在2020-05-15号多次访问,这里也算进去了
6.png

sort_array:使用频率 ★★★

数组内排序;通常结合collect_set或者collect_list使用;

如collect_list为例子,可以发现日期并不是按照顺序组合的,这里有需求需要按照时间升序的方式来组合

--按照时间升序来组合
select
  user_id,
  sort_array(collect_list(visit_date) over(partition by user_id)) as visit_date_set 
from wedw_tmp.tmp_url_info
--结果如下图所示;
1.png

如果突然业务方改需求了,想要按照时间降序来组合,那基于上面的sql该如何变通呢?哈哈哈哈,其实没那么复杂,这里根据没必要按照sort_array来实现,在collect_list中的分组函数内直接按照visit_date降序即可,这里只是为了演示sort_array如何使用

--按照时间降序排序
select
  user_id,
  collect_list(visit_date) over(partition by user_id order by visit_date desc) as visit_date_set 
from wedw_tmp.tmp_url_info
2.png

这里还有一个小技巧,对于数值类型统计多列或者数组内的最大值,可以使用sort_array来实现

--具体思路就是先把数值变成负数,然后升序排序即可
select -sort_array(array(-a,-b,-c))[0] as max_value
from (
    select 1 as a, 3 as b, 2 as c
) as data

+------------+--+
| max_value  |
+------------+--+
| 3          |
+------------+--+

URL相关

parse_url:使用频率 ★★★★

用于解析url相关的参数,直接上sql

select 
visit_url,
parse_url(visit_url, 'HOST') as url_host, --解析host
parse_url(visit_url, 'PATH') as url_path, --解析path
parse_url(visit_url, 'QUERY') as url_query,--解析请求参数
parse_url(visit_url, 'REF') as url_ref, --解析ref
parse_url(visit_url, 'PROTOCOL') as url_protocol, --解析协议
parse_url(visit_url, 'AUTHORITY') as url_authority,--解析author
parse_url(visit_url, 'FILE') as url_file, --解析filepath
parse_url(visit_url, 'USERINFO') as url_user_info --解析userinfo
from wedw_tmp.tmp_url_info
3.png

reflect:使用频率 ★★

该函数是利用java的反射来实现一些功能,目前笔者只用到了关于url编解码

--url编码
select 
visit_url,
reflect("java.net.URLEncoder", "encode", visit_url, "UTF-8") as visit_url_encode
from wedw_tmp.tmp_url_info
4.png
--url解码
select 
  visit_url,
 reflect("java.net.URLDecoder", "decode", visit_url_encode, "UTF-8") as visit_url_decode
from 
(
  select 
  visit_url,
  reflect("java.net.URLEncoder", "encode", visit_url, "UTF-8") as visit_url_encode
  from wedw_tmp.tmp_url_info
)t
5.png

JSON相关

get_json_object:使用频率 ★★★★★

通常用于获取json字符串中的key,如果不存在则返回null

select 
  get_json_object(json_data,'$.user_id') as user_id,
  get_json_object(json_data,'$.age') as age --不存在age,则返回null
from 
(
  select 
     concat('{"user_id":"',user_id,'"}') as json_data
  from wedw_tmp.tmp_url_info
)t
6.png

列转行相关

explode:使用频率 ★★★★★

列转行,通常是将一个数组内的元素打开,拆成多行

--简单例子
select  explode(array(1,2,3,4,5))
+------+--+
| col  |
+------+--+
| 1    |
| 2    |
| 3    |
| 4    |
| 5    |
+------+-
--结合lateral view 使用
select 
  get_json_object(user,'$.user_id')
from 
(
  select 
   distinct collect_set(concat('{"user_id":"',user_id,'"}')) over(partition by year(visit_date)) as user_list
  from wedw_tmp.tmp_url_info
)t
lateral view explode(user_list) user_list as user
7.png

Cube相关

GROUPING SETS:使用频率 ★

类似于kylin中的cube,将多种维度进行组合统计;在一个GROUP BY查询中,根据不同维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL

--按照用户+访问日期统计统计次数
select 
  user_id, 
  visit_date,
  sum(visit_cnt) as visit_cnt
from wedw_tmp.tmp_url_info
group by user_id,visit_date
grouping sets(user_id,visit_date)

--下图的结果类似于以下sql
select 
  user_id, 
  NULL as visit_date,
  sum(visit_cnt) as visit_cnt
from wedw_tmp.tmp_url_info
union all 
select 
  NULL as user_id, 
  visit_date,
  sum(visit_cnt) as visit_cnt
from wedw_tmp.tmp_url_info
union all 
select 
  user_id, 
  visit_date,
  sum(visit_cnt) as visit_cnt
from wedw_tmp.tmp_url_info
8.png

字符相关

concat:使用频率 ★★★★★

字符拼接,concat(string|binary A, string|binary B...);该函数比较简单

select concat('a','b','c') 
--最后结果就是abc

concat_ws:使用频率 ★★★★★

按照指定分隔符将字符或者数组进行拼接;concat_ws(string SEP, array<string>)/concat_ws(string SEP, string A, string B...)

--还是concat使用的例子,这里可以写成
select concat_ws('','a','b','c')

--将数组列表元素按照指定分隔符拼接,类似于python中的join方法
select concat_ws('',array('a','b','c'))

instr:使用频率 ★★★★

查找字符串str中子字符串substr出现的位置,如果查找失败将返回0,如果任一参数为Null将返回null,注意位置为从1开始的;通常笔者用这个函数作为模糊查询来查询

--查询vist_time包含10的记录
select 
 user_id,
 visit_time,
 visit_date,
 visit_cnt
from wedw_tmp.tmp_url_info
where instr(visit_time,'10')>0
9.png

length:使用频率 ★★★★★

统计字符串的长度

select length('abc')

size:使用频率 ★★★★★

是用来统计数组或者map的元素,通常笔者用该函数用来统计去重数(一般都是通过distinct,然后count统计,但是这种方式效率较慢)

--使用size
select 
   distinct size(collect_set(user_id) over(partition by year(visit_date)))
from wedw_tmp.tmp_url_info
+-----------+--+
| user_cnt  |
+-----------+--+
| 4         |
+-----------+--+
1 row selected (0.268 seconds)

--使用通过distinct,然后count统计的方式
select 
  count(1)
from 
(
  select 
    distinct user_id
  from wedw_tmp.tmp_url_info 
)t
+-----------+--+
| count(1)  |
+-----------+--+
| 4         |
+-----------+--+
1 row selected (0.661 seconds)

--笔者这里只用到了19条记录数,就可以明显观察到耗时差异,这里涉及到shuffle问题,后续将会有单独的文章来讲解hive的数据倾斜问题

trim:使用频率 ★★★★★

将字符串前后的空格去掉,和java中的trim方法一样,这里还有ltrim和rtrim,不再讲述了

--最后会得到sfssf sdf sdfds
select trim(' sfssf sdf sdfds ') 

regexp_replace:使用频率 ★★★★★

regexp_replace(string INITIAL_STRING, string PATTERN, string REPLACEMENT)

按照Java正则表达式PATTERN将字符串中符合条件的部分成REPLACEMENT所指定的字符串,如里REPLACEMENT空的话,抽符合正则的部分将被去掉

--将url中?参数后面的内容全部剔除
  select 
    distinct regexp_replace(visit_url,'\\?(.*)','') as visit_url
  from wedw_tmp.tmp_url_info
10.png

regexp_extract:使用频率 ★★★★

regexp_extract(string subject, string pattern, int index)

抽取字符串subject中符合正则表达式pattern的第index个部分的子字符串,注意些预定义字符的使用

类型于python爬虫中的xpath,用于提取指定的内容

--提取csdn文章编号
select 
    distinct regexp_extract(visit_url,'/details/([0-9]+)',1) as visit_url
  from wedw_tmp.tmp_url_info 
11.png

substring_index:使用频率 ★★

substring_index(string A, string delim, int count)

截取第count分隔符之前的字符串,如count为正则从左边开始截取,如果为负则从右边开始截取

--比如将2020年的用户组合获取前2个用户,下面的sql将上面讲解的函数都结合在一起使用了
select 
  user_set,
  substring_index(user_set,',',2) as user_id
from  
(
  select 
    distinct concat_ws(',',collect_set(user_id) over(partition by year(visit_date))) as user_set
  from wedw_tmp.tmp_url_info 
)t
12.png

条件判断

if:使用频率 ★★★★★

if(boolean testCondition, T valueTrue, T valueFalseOrNull):判断函数,很简单

如果testCondition 为true就返回valueTrue,否则返回valueFalseOrNull

--判断是否为user1用户
select 
  distinct user_id,
  if(user_id='user1',true,false) as flag
from wedw_tmp.tmp_url_info 
13.png

case when :使用频率 ★★★★★

CASE a WHEN b THEN c [WHEN d THEN e] [ELSE f] END

如果a=b就返回c,a=d就返回e,否则返回f 如CASE 4 WHEN 5 THEN 5 WHEN 4 THEN 4 ELSE 3 END 将返回4

相比if,个人更倾向于使用case when

--仍然以if上面的列子
select 
  distinct user_id,
  case when user_id='user1' then 'true'
     when user_id='user2' then 'test'
  else 'false' end  as flag
from wedw_tmp.tmp_url_info 
14.png

coalesce:使用频率 ★★★★★

COALESCE(T v1, T v2, ...)

返回第一非null的值,如果全部都为NULL就返回NULL

--该函数结合lead或者lag更容易贴近实际业务需求,这里使用lead,并取后3行的值作为当前行值
select 
  user_id,
  visit_time,
  rank,
  lead_time,
  coalesce(visit_time,lead_time) as has_time
from 
(
  select
  user_id,
  visit_time,
  visit_cnt,
  row_number() over(partition by user_id order by visit_date desc) as rank,
  lead(visit_time,3) over(partition by user_id order by visit_date desc) as lead_time
  from  wedw_tmp.tmp_url_info
  order by user_id
)t
15.png

数值相关

round:使用频率 ★★

round(DOUBLE a):返回对a四舍五入的BIGINT值,

round(DOUBLE a, INT d):返回DOUBLE型d的保留n位小数的DOUBLW型的近似值

该函数没什么可以讲解的

select round(4/3),round(4/3,2);
+------+-------+--+
| _c0  |  _c1  |
+------+-------+--+
| 1.0  | 1.33  |
+------+-------+--+

ceil:使用频率 ★★★

ceil(DOUBLE a), ceiling(DOUBLE a)

求其不小于小给定实数的最小整数;向上取整

select ceil(4/3),ceiling(4/3)
16.png

floor:使用频率 ★★★

floor(DOUBLE a):向下取整''

select floor(4/3);
17.png

hex:使用频率 ★

hex(BIGINT a)/ hex(STRING a)/ hex(BINARY a)

计算十六进制a的STRING类型,如果a为STRING类型就转换成字符相对应的十六进制

该函数很少使用,主要是因为曾经遇到过关于emoj表情符脏数据,故使用该函数进行处理

时间相关(比较简单)

from_unxitime:使用频率 ★★★★★

from_unixtime(bigint unixtime[, string format])

将时间的秒值转换成format格式(format可为“yyyy-MM-dd hh:mm:ss”,“yyyy-MM-dd hh”,“yyyy-MM-dd hh:mm”等等)

select from_unixtime(1599898989,'yyyy-MM-dd') as current_time
+---------------+--+
| current_time  |
+---------------+--+
| 2020-09-12    |
+---------------+--+

unix_timestamp:使用频率 ★★★★★

unix_timestamp():获取当前时间戳

unix_timestamp(string date):获取指定时间对应的时间戳

通过该函数结合from_unixtime使用,或者可计算两个时间差等

select 
 unix_timestamp() as current_timestamp,--获取当前时间戳
 unix_timestamp('2020-09-01 12:03:22') as speical_timestamp,--指定时间对于的时间戳
 from_unixtime(unix_timestamp(),'yyyy-MM-dd')  as current_date --获取当前日期
18.png

to_date:使用频率 ★★★★★

to_date(string timestamp)

返回时间字符串的日期部分

--最后得到2020-09-10
select to_date('2020-09-10 10:31:31') 

year:使用频率 ★★★★★

year(string date)

返回时间字符串的年份部分

--最后得到2020
select year('2020-09-02')

month:使用频率 ★★★★★

month(string date)

返回时间字符串的月份部分

--最后得到09
select month('2020-09-10')

day:使用频率 ★★★★★

day(string date)

返回时间字符串的天

--最后得到10
select day('2002-09-10')

date_add:使用频率 ★★★★★

date_add(string startdate, int days)

从开始时间startdate加上days

--获取当前时间下未来一周的时间
select date_add(now(),7) 
--获取上周的时间
select date_add(now(),-7)

date_sub:使用频率 ★★★★★

date_sub(string startdate, int days)

从开始时间startdate减去days

--获取当前时间下未来一周的时间
select date_sub(now(),-7) 
--获取上周的时间
select date_sub(now(),7)
上一篇下一篇

猜你喜欢

热点阅读