r语言学习R语言可视化R语言学习

ggpubr包系列学习教程(六)

2018-09-08  本文已影响7人  Davey1220

使用ggscatter函数绘制散点图


加载所需R包

library(ggpubr)

基本用法:

Usage

ggscatter(data, x, y, combine = FALSE, merge = FALSE, color = "black",
          fill = "lightgray", palette = NULL, shape = 19, size = 2,
          point = TRUE, rug = FALSE, title = NULL, xlab = NULL, ylab = NULL,
          facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE,
          add = c("none", "reg.line", "loess"), add.params = list(),
          conf.int = FALSE, conf.int.level = 0.95, fullrange = FALSE,
          ellipse = FALSE, ellipse.level = 0.95, ellipse.type = "norm",
          ellipse.alpha = 0.1, mean.point = FALSE,
          mean.point.size = ifelse(is.numeric(size), 2 * size, size),
          star.plot = FALSE, star.plot.lty = 1, star.plot.lwd = NULL,
          label = NULL, font.label = c(12, "plain"), font.family = "",
          label.select = NULL, repel = FALSE, label.rectangle = FALSE,
          cor.coef = FALSE, cor.coeff.args = list(), cor.method = "pearson",
          cor.coef.coord = c(NULL, NULL), cor.coef.size = 4, ggp = NULL,
          show.legend.text = NA, ggtheme = theme_pubr(), ...)

常用参数:

Arguments

data   # a data frame
x, y   #x and y variables for drawing.
combine    #logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables.
merge    #logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable.
color, fill    #point colors.
palette    #the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty".
shape    #point shape. See show_point_shapes.
size    #Numeric value (e.g.: size = 1). change the size of points and outlines.
point    #是否显示点 logical value. If TRUE, show points.
rug    #是否添加边际线 logical value. If TRUE, add marginal rug.
title    #plot main title.
xlab    #character vector specifying x axis labels. Use xlab = FALSE to hide xlab.
ylab    #character vector specifying y axis labels. Use ylab = FALSE to hide ylab.
facet.by    #character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data.
panel.labs    #a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ).
short.panel.labs    #是否缩写分面标题 logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels.
add    #添加回归线 allowed values are one of "none", "reg.line" (for adding linear regression line) or "loess" (for adding local regression fitting).
add.params    #parameters (color, size, linetype) for the argument 'add'; e.g.: add.params = list(color = "red").
conf.int    #是否添加置信区间 logical value. If TRUE, adds confidence interval.
conf.int.level    #设置置信区间的范围 Level controlling confidence region. Default is 95%. Used only when add != "none" and conf.int = TRUE.
fullrange    #should the fit span the full range of the plot, or just the data. Used only when add != "none".
ellipse    #是否添加分组椭圆 logical value. If TRUE, draws ellipses around points.
ellipse.level    #the size of the concentration ellipse in normal probability.
ellipse.type    #Character specifying frame type. Possible values are 'convex', 'confidence' or types supported by stat_ellipse including one of c("t", "norm", "euclid").
ellipse.alpha    #Alpha for ellipse specifying the transparency level of fill color. Use alpha = 0 for no fill color.
mean.point    #是否添加均值的点 logical value. If TRUE, group mean points are added to the plot.
mean.point.size    #numeric value specifying the size of mean points.
star.plot    #是否添加星图 logical value. If TRUE, a star plot is generated.
star.plot.lty, star.plot.lwd    #星图的线型和线宽 line type and line width (size) for star plot, respectively.
label    #the name of the column containing point labels. Can be also a character vector with length = nrow(data).
font.label    #a vector of length 3 indicating respectively the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of point labels. For example font.label = c(14, "bold", "red"). To specify only the size and the style, use font.label = c(14, "plain").
font.family    #character vector specifying font family.
label.select    #character vector specifying some labels to show.
repel    #a logical value, whether to use ggrepel to avoid overplotting text labels or not.
label.rectangle    #logical value. If TRUE, add rectangle underneath the text, making it easier to read.
cor.coef    #是否添加相关系数和p-value值 logical value. If TRUE, correlation coefficient with the p-value will be added to the plot.
cor.coeff.args    #a list of arguments to pass to the function stat_cor for customizing the displayed correlation coefficients. For example: cor.coeff.args = list(method = "pearson", label.x.npc = "right", label.y.npc = "top").
cor.method    #设定相关系数的计算方法 method for computing correlation coefficient. Allowed values are one of "pearson", "kendall", or "spearman".
cor.coef.coord     #numeric vector, of length 2, specifying the x and y coordinates of the correlation coefficient. Default values are NULL.
cor.coef.size     #correlation coefficient text font size.
ggp    #a ggplot. If not NULL, points are added to an existing plot.
show.legend.text    #logical. Should text be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
ggtheme    #function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), ....
...    #other arguments to be passed to geom_point and ggpar.

使用示例:

Examples

# Load data
data("mtcars")
df <- mtcars
df$cyl <- as.factor(df$cyl)
head(df)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
# Basic plot
p1 <- ggscatter(df, x = "wt", y = "mpg",
                color = "red")
p1
p1
p2 <- ggscatter(df, x = "wt", y = "mpg",
          color = "black", shape = 21, size = 3, # Points color, shape and size
          add = "reg.line",  # Add regressin line
          add.params = list(color = "blue", fill = "lightgray"), # Customize reg. line
          conf.int = TRUE, # Add confidence interval
          cor.coef = TRUE, # Add correlation coefficient. see ?stat_cor
          cor.coeff.args = list(method = "pearson", label.x = 3, label.sep = "\n")
)
p2
p2
# loess method: local regression fitting
p3 <- ggscatter(df, x = "wt", y = "mpg",
          add = "loess", conf.int = TRUE,
          cor.coef = TRUE, # Add correlation coefficient. see ?stat_cor
          cor.coeff.args = list(method = "spearman", label.x = 3, label.sep = "\n")
)
p3
p3
# Control point size by continuous variable values ("qsec")
p4 <- ggscatter(df, x = "wt", y = "mpg",
          color = "#00AFBB", size = "qsec")
p4
p4
# Change colors
# Use custom color palette
# Add marginal rug
p5 <- ggscatter(df, x = "wt", y = "mpg", color = "cyl", size = "qsec",
          palette = c("#00AFBB", "#E7B800", "#FC4E07") )
p5
p5
p6 <- ggscatter(df, x = "wt", y = "mpg", color = "cyl", rug=TRUE,
                palette = c("#00AFBB", "#E7B800", "#FC4E07") )
p6
p6
# Add group ellipses and mean points
# Add stars
p7 <- ggscatter(df, x = "wt", y = "mpg",
          color = "cyl", shape = "cyl",
          palette = c("#00AFBB", "#E7B800", "#FC4E07"),
          ellipse = TRUE)
p7
p7
p8 <- ggscatter(df, x = "wt", y = "mpg",
                color = "cyl", shape = "cyl",
                palette = c("#00AFBB", "#E7B800", "#FC4E07"),
                ellipse = TRUE, ellipse.type = "convex",
                mean.point = TRUE,
                )
p8
p8
p9 <- ggscatter(df, x = "wt", y = "mpg",
                color = "cyl", shape = "cyl",
                palette = c("#00AFBB", "#E7B800", "#FC4E07"),
                ellipse = TRUE, ellipse.type = 'confidence',
                mean.point = TRUE,
                star.plot = TRUE)
p9
p9
# Textual annotation
df$name <- rownames(df)
p10 <- ggscatter(df, x = "wt", y = "mpg",
          color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"),
          label = "name")
p10
p10
p11 <- ggscatter(df, x = "wt", y = "mpg",
                color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"),
                label = "name", repel = TRUE)
p11
p11

参考来源:

https://www.rdocumentation.org/packages/ggpubr/versions/0.1.4/topics/ggscatter

sessionInfo()
## R version 3.5.1 (2018-07-02)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: OS X El Capitan 10.11.3
## 
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] zh_CN.UTF-8/zh_CN.UTF-8/zh_CN.UTF-8/C/zh_CN.UTF-8/zh_CN.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] bindrcpp_0.2.2   ggpubr_0.1.7.999 magrittr_1.5     ggplot2_3.0.0   
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_0.12.18     rstudioapi_0.7   bindr_0.1.1      knitr_1.20      
##  [5] tidyselect_0.2.4 munsell_0.5.0    colorspace_1.3-2 R6_2.2.2        
##  [9] rlang_0.2.2      stringr_1.3.1    plyr_1.8.4       dplyr_0.7.6     
## [13] tools_3.5.1      grid_3.5.1       gtable_0.2.0     withr_2.1.2     
## [17] htmltools_0.3.6  assertthat_0.2.0 yaml_2.2.0       lazyeval_0.2.1  
## [21] rprojroot_1.3-2  digest_0.6.16    tibble_1.4.2     crayon_1.3.4    
## [25] purrr_0.2.5      ggrepel_0.8.0    glue_1.3.0       evaluate_0.11   
## [29] rmarkdown_1.10   labeling_0.3     stringi_1.2.4    compiler_3.5.1  
## [33] pillar_1.3.0     scales_1.0.0     backports_1.1.2  pkgconfig_2.0.2
上一篇下一篇

猜你喜欢

热点阅读