奥数自学研究

高中奥数 2022-03-23

2022-03-23  本文已影响0人  不为竞赛学奥数

2022-03-23-01

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P064 例11)

a_{1},a_{2},\cdots ,a_{n}为正实数,满足a_{1}+a_{2}+\cdots +a_{n}=\dfrac{1}{a_{1}}+\dfrac{1}{a_{2}}+\cdots +\dfrac{1}{a_{n}}.求证:
\dfrac{1}{n-1+a_{1}}+ \dfrac{1}{n-1+a_{2}}+\cdots +\dfrac{1}{n-1+a_{n}} \geqslant 1.
证明

b_{i}=\dfrac{1}{n-1+a_{i}},i=1,2\cdots ,n,则b_{i}<\dfrac{1}{n-1},且
a_{i}=\dfrac{1-\left(n-1\right)b_{i}}{b_{i}},i=1,z,\cdots ,n.
故条件转化为
\sum\limits_{i=1}^{n}\dfrac{1-\left(n-1\right)b_{i}}{b_{i}}=\sum\limits_{i=1}^{n}\dfrac{b_{i}}{1-\left(n-1\right)b_{i}}.
下面用反证法,假设
b_{1}+b_{2}+\cdots +b_{n}<1.\\qquad(*)
由Cauchy不等式可得
\sum\limits_{j\ne i}\left(1-\left(n-1\right)b_{j}\right)\cdot \sum\limits_{j\ne i}\dfrac{1}{1-\left(n-1\right)b_{i}}\geqslant \left(n-1\right)^{2},
(*),\sum\limits_{j\ne i}\left(1-\left(n-1\right)b_{j}\right)<\left(n-1\right)b_{j},

所以\sum\limits_{j\ne i}\dfrac{1}{1-\left(n-1\right)b_{i}}>\dfrac{n-1}{b_{j}},

\sum\limits_{j\ne i}\dfrac{1-\left(n-1\right)b_{i}}{1-\left(n-1\right)b_{j}}>\left(n-1\right)\cdot \dfrac{1-\left(n-1\right)b_{i}}{b_{i}}.

上式对i=1,2,\cdots ,n求和,有
\sum\limits_{i=1}^{n} \sum\limits_{j \neq i} \dfrac{1-(n-1) b_{i}}{1-(n-1) b_{j}}>(n-1) \sum\limits_{i=1}^{n} \dfrac{1-(n-1) b_{i}}{b_{i}}
\sum\limits_{j=1}^{n} \sum\limits_{j \neq i} \dfrac{1-(n-1) b_{i}}{1-(n-1) b_{j}}>(n-1) \sum\limits_{i=1}^{n} \dfrac{1-(n-1) b_{i}}{b_{i}},\qquad(**)

而由(*),\sum\limits_{i \neq j}\left(1-(n-1) b_{i}\right)<b_{j}(n-1),

故利用(**),有
(n-1) \sum\limits_{j=1}^{n} \dfrac{b_{j}}{1-(n-1) b_{j}}>(n-1) \sum\limits_{i=1}^{n} \dfrac{1-(n-1) b_{i}}{b_{i}}.
矛盾!

2022-03-23-02

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P065 例12)

对正整数n\left(n\geqslant 2\right),假设f\left(x\right)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots +a_{1}x+a_{0}的系数全为实数,f\left(x\right)的全部复根有负实部,且f\left(x\right)有一对相等实根.求证:一定存在k,1\leqslant k\leqslant n-1,满足:
a_{k}^{2}-4a_{k-1}a_{k+1}\leqslant 0.
证明

n=2时,f\left(x\right)=a_{2}\left(x+a\right)^{2},这里a是一个正实数,所以
f\left(x\right)=a_{2}\left(x^{2}+2ax+a^{2}\right).
a_{1}=2aa_{2},a_{0}=a^{2}a_{2},a_{1}^{2}-4a_{0}a_{2}=0,结论成立.

下设正整数n>2,且设a_{n}>0,(若否,则每个系数都乘以\left(-1\right)),则
f\left(x\right)=\left(x+a\right)^{2}\left(b_{n-2}x^{n-2}+b_{n-3}x^{n-3}+\cdots +b_{1}x+b_{0}\right)\left(a\in \mathbb{R}^{+}\right).\qquad(*)
因为实系数多项式的复根是成对出现的,假设有k对共轭复根,记为x_{j}\pm \mathrm{i}y_{j},j=1,2,\cdots ,k,则x_{j}<0.其余n-2-2k个根为负实根,记为z_{1},z_{2},\cdots ,z_{n-2-2k}.则
\begin{aligned} & \dfrac{1}{b_{n-2}} \cdot f(x) \\ =&(x+a)^{2} \cdot \prod\limits_{j=1}^{k}\left[x-\left(x_{j}+\mathrm{i} y_{j}\right)\right]\left[x-\left(x_{j}-\mathrm{i} y_{j}\right)\right] \cdot \prod\limits_{l=1}^{n-2-2 k}\left(x-z_{l}\right) \\ =&(x+a)^{2} \cdot \prod\limits_{j=1}^{k}\left(x^{2}-2 x_{j} x+x_{j}^{2}+y_{j}^{2}\right) \cdot \prod\limits_{l=1}^{n-2-2 k}\left(x-z_{l}\right),\qquad(**) \end{aligned}

(*)(**)可得,b_{j}>0,j=0,1,2,\cdots ,n-2.且
\begin{aligned} &f\left(x\right)\\ =&\left(x+a\right)^{2}\left(b_{n-2}x^{n-2}+b_{n-3}x^{n-3}+\cdots +b_{1}x+b_{0}\right)\\ =&b_{n-2}x^{n}+\left(2ab_{n-2}+b_{n-3}\right)x^{n-1}+\left(a^{2}b_{n-2}+2ab_{n-3}+b_{n-4}\right)x^{n-2}\\ &+\cdots +\left(a^{2}b_{2}+2ab_{1}+b_{0}\right)x^{2}+\left(a^{2}b_{1}+2ab_{0}\right)x+a^{2}b_{0}. \end{aligned}
为便于统一书写,引入b_{i}:当i<0时,b_{i}=0;当i>n-2时,b_{i}=0.故
a_{j}=a^{2}b_{j}+2ab_{j-1}+b_{j-2},j=0,1,2,\cdots ,n.
n=3时,可用反证法证明.


a_{1}^{2}-4a_{0}a_{2}>0,a_2^{2}-4a_{1}a_{3}>0.
a_{0}=a^{2}b_{0},a_{1}=a^{2}b_{1}+2ab_{0},
因为
a_{2}=2ab_{1}+b_{0},a_{3}=b_{1}.
所以
\begin{aligned} 0&<a_{1}^{2}-4a_{0}a_{2}\\ &=\left(a^{2}b_{1}+2ab_{0}\right)^{2}-4a^{2}b_{0}\left(2ab_{1}+b_{0}\right)\\ &=a^{3}b_{1}\left(ab_{1}-4b_{0}\right), \end{aligned}
于是ab_{1}>4b_{0}.\qquad(*)

又由于
\begin{aligned} 0&<a_{2}^{2}-4a_{1}a_{3}\\ &=\left(2ab_{1}+b_{0}\right)^{2}-4\left(a^{2}b_{1}+2ab_{0}\right)b_{1}\\ =b_{0}\left(b_{0}-4ab_{1}\right), \end{aligned}
b_{0}>4ab_{1}.\qquad(**)

(*)(**)矛盾!

n>3时,也使用反证法证明.

设对于k\in \left\{1,2,\cdots ,n-1\right\}都有a_{k}^{2}-4a_{k-1}a_{i+1}>0,则
\begin{aligned} 0<& a_{k}^{2}-4 a_{k-1} a_{k+1} \\ =&\left(a^{2} b_{k}+2 a b_{k-1}+b_{k-2}\right)^{2}-4\left(a^{2} b_{k-1}+2 a b_{k-2}+b_{k-3}\right)\left(a^{2} b_{k+1}+2 a b_{k}+b_{k-1}\right) \\ <& b_{k-2}^{2}+a^{4} b_{k}^{2}-4 a b_{k-2} b_{k-1}-4 a^{3} b_{k-1} b_{k} . \end{aligned}
0=a^{3} b_{k}\left(a b_{k}-4 b_{k-1}\right)+b_{k-2}\left(b_{k-2}-4 a b_{k-1}\right).
q_{k}=ab_{k}-4b_{k-1},r_{k}=b_{k-1}-4ab_{k},k=1,2,\cdots ,n-1.则0<a^{3}b_{k}q_{k}+b_{k-2}r_{k-1}.\qquad(***)

k=1时,q_{1}=ab_{1}-4b_{0}.

(***)0<a^{3}b_{1}q_{1},故q_{1}>0,有ab_{1}>4b_{0},r_{1}=b_{0}-4ab_{1}<0.

k=n-1时,从(***)b_{n-3}r_{n-2}>0,故r_{n-2}>0.

u表示使r_{u}>0的最小的下标(2\leqslant u\leqslant n-2),即r_{u-1}\leqslant 0.

(***)中令k=u,由0<a^{3}b_{u}q_{u}+b_{u-2}r_{u-1},有q_{u}>0,此时有
q_{u}=ab_{u}-4b_{u-1}>0,\text{则}ab_{u}>4b_{u-1}.\qquad(****)
r_{u}=b_{u-1}-4ab_{u}>0,\text{则}b_{u-1}>4ab_{u}.\qquad(*****)
(****)(*****)即得矛盾!

上一篇 下一篇

猜你喜欢

热点阅读