(三)golang数组和切片 源码分析
1、数组
golang中的数组是一种由固定长度和固定对象类型所组成的数据类型。例如下面:
var a [4]int
a是一个拥有4个int类型元素的数组。当a一旦被声明之后,元素个数就被固定了下来,在a这个变量的生命周期之内,元素个数不会发生变化。而此时a的类型就是[4]int,如果同时存在一个b变量,为[5]int。即便两个变量仅仅相差一个元素,那么在内存中也占据着完全不同的地址分配单元,a和b就是两个完全不同的数据类型。在golang中,数组一旦被定义了,那么其内部的元素就完成了初始化。也就是时候a[0]等于0。
在golang当中,一个数组就是一个数据实体对象。在golang当使用a时,就代表再使用a这个数组。而在C中,当使用a时,则代表着这个数组第一个元素的指针。
2、切片
letters := []string{"a", "b", "c", "d"}
数组声明时候方括号内需要写明数组的长度或者使用(...)符号自动计算长度,切片不需要指定数组的长度。比较规范的声明方式是使用make,大致有两种方式
1、只指定长度,这个时候切片长度和容量相同;
2、同时指定切片的长度和容量。
var s1 = make([]byte, 5)
var s2 = make([]byte, 5, 10)
由于切片是 引用类型 ,因此当引用改变其中元素的值时候,其他的所有引用都会改变该值。例如
var a = []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
s1 := a[:4]
s2 := a[3:7]
fmt.Println(s1)
fmt.Println(s2)
s1[3] = 100
fmt.Println(s1)
fmt.Println(s2)
结果是:
[1 2 3 4]
[4 5 6 7]
[1 2 3 100]
[100 5 6 7]
从概念上看,切片像是一个结构体,包含了三个元素:
1、一个指向数组中切片指定的开始位置;
2、长度,即切片的长度,通过内置函数len获得;
3、最大长度,即切片的最大容量,通过内置函数cap获得。
如果len比cap还大,那么就会触发运行时异常。
golang提供append函数来添加元素,当使用append函数时,append函数会判断目的切片是否具有剩余空间,如果没有剩余空间,则会自动扩充两倍空间。
golang提供copy用于将内容从一个数组切片复制到另一个数组切片。如果加入的两个数组切片不一样大,就会按其中较小的那个数组切片的元素个数进行复制。
slice1 := []int{1, 2, 3, 4, 5}
slice2 := []int{5, 4, 3}
copy(slice2, slice1) // 只会复制slice1的前3个元素到slice2中
copy(slice1, slice2) // 只会复制slice2的3个元素到slice1的前3个位置
切片源码解析
源码位置:https://github.com/golang/go/blob/master/src/runtime/slice.go
切片数据结构
type slice struct {
array unsafe.Pointer
len int
cap int
}
切片的结构体由3部分构成,Pointer 是指向一个数组的指针,len 代表当前切片的长度,cap 是当前切片的容量。cap 总是大于等于 len 的。
创建切片
func makeslice(et *_type, len, cap int) unsafe.Pointer {
// 所需要分配的内存大小
mem, overflow := math.MulUintptr(et.size, uintptr(cap))
// 判断根据容量内存大小是否超过限制 数组长度和容量是否合法
if overflow || mem > maxAlloc || len < 0 || len > cap {
// NOTE: Produce a 'len out of range' error instead of a
// 'cap out of range' error when someone does make([]T, bignumber).
// 'cap out of range' is true too, but since the cap is only being
// supplied implicitly, saying len is clearer.
// See golang.org/issue/4085.
mem, overflow := math.MulUintptr(et.size, uintptr(len))
// 判断根据长度内存大小是否超过限制、数组长度是否合法
if overflow || mem > maxAlloc || len < 0 {
panicmakeslicelen()
}
panicmakeslicecap()
}
return mallocgc(mem, et, true)
}
切片增长
func growslice(et *_type, old slice, cap int) slice {
if raceenabled {
callerpc := getcallerpc()
racereadrangepc(old.array, uintptr(old.len*int(et.size)), callerpc, funcPC(growslice))
}
if msanenabled {
msanread(old.array, uintptr(old.len*int(et.size)))
}
// 如果小于原来的容量大小直接panic
if cap < old.cap {
panic(errorString("growslice: cap out of range"))
}
if et.size == 0 {
// append should not create a slice with nil pointer but non-zero len.
// We assume that append doesn't need to preserve old.array in this case.
return slice{unsafe.Pointer(&zerobase), old.len, cap}
}
//扩容策略
//如果新容量大于原来容量的二倍直接用新容量。
//如果原来切片的容量小于1024,于是扩容的时候就翻倍增加容量。
//一旦元素个数超过 1024,那么增长因子就变成 1.25 ,即每次增加原来容量的四分之一。
newcap := old.cap
doublecap := newcap + newcap
if cap > doublecap {
newcap = cap
} else {
if old.len < 1024 {
newcap = doublecap
} else {
// Check 0 < newcap to detect overflow
// and prevent an infinite loop.
for 0 < newcap && newcap < cap {
newcap += newcap / 4
}
// Set newcap to the requested cap when
// the newcap calculation overflowed.
if newcap <= 0 {
newcap = cap
}
}
}
var overflow bool
var lenmem, newlenmem, capmem uintptr
// Specialize for common values of et.size.
// For 1 we don't need any division/multiplication.
// For sys.PtrSize, compiler will optimize division/multiplication into a shift by a constant.
// For powers of 2, use a variable shift.
switch {
case et.size == 1:
lenmem = uintptr(old.len)
newlenmem = uintptr(cap)
capmem = roundupsize(uintptr(newcap))
overflow = uintptr(newcap) > maxAlloc
newcap = int(capmem)
case et.size == sys.PtrSize:
lenmem = uintptr(old.len) * sys.PtrSize
newlenmem = uintptr(cap) * sys.PtrSize
capmem = roundupsize(uintptr(newcap) * sys.PtrSize)
overflow = uintptr(newcap) > maxAlloc/sys.PtrSize
newcap = int(capmem / sys.PtrSize)
case isPowerOfTwo(et.size):
var shift uintptr
if sys.PtrSize == 8 {
// Mask shift for better code generation.
shift = uintptr(sys.Ctz64(uint64(et.size))) & 63
} else {
shift = uintptr(sys.Ctz32(uint32(et.size))) & 31
}
lenmem = uintptr(old.len) << shift
newlenmem = uintptr(cap) << shift
capmem = roundupsize(uintptr(newcap) << shift)
overflow = uintptr(newcap) > (maxAlloc >> shift)
newcap = int(capmem >> shift)
default:
lenmem = uintptr(old.len) * et.size
newlenmem = uintptr(cap) * et.size
capmem, overflow = math.MulUintptr(et.size, uintptr(newcap))
capmem = roundupsize(capmem)
newcap = int(capmem / et.size)
}
// The check of overflow in addition to capmem > maxAlloc is needed
// to prevent an overflow which can be used to trigger a segfault
// on 32bit architectures with this example program:
//
// type T [1<<27 + 1]int64
//
// var d T
// var s []T
//
// func main() {
// s = append(s, d, d, d, d)
// print(len(s), "\n")
// }
if overflow || capmem > maxAlloc {
panic(errorString("growslice: cap out of range"))
}
var p unsafe.Pointer
if et.ptrdata == 0 {
p = mallocgc(capmem, nil, false)
// The append() that calls growslice is going to overwrite from old.len to cap (which will be the new length).
// Only clear the part that will not be overwritten.
memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
} else {
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
p = mallocgc(capmem, et, true)
if lenmem > 0 && writeBarrier.enabled {
// Only shade the pointers in old.array since we know the destination slice p
// only contains nil pointers because it has been cleared during alloc.
bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(old.array), lenmem)
}
}
memmove(p, old.array, lenmem)
return slice{p, old.len, newcap}
}