使用Prometheus Operator监控Kubernete
一、Prometheus-Operator介绍
Prometheus Operator 是了为简化在 Kubernetes 上部署、管理和运行 Prometheus 和 Alertmanager 集群而设计的,它为监控 Kubernetes 资源和 Prometheus 实例的管理提供了简单的定义,比如自带了一些报警规则和展示看板。
Prometheus Operator 架构图
在这里插入图片描述
Prometheus Operator 组件:
- Operator:控制器,根据自定义资源来部署和管理 Prometheus Server;
- Prometheus Server: 根据自定义资源 Prometheus 类型中定义的内容而部署的 Prometheus Server 集群,这些自定义资源可以看作是用来管理 Prometheus Server 集群的 StatefulSets 资源;
- Prometheus:声明 Prometheus 资源对象期望的状态,Operator 确保这个资源对象运行时一直与定义保持一致;
- ServiceMonitor:声明指定监控的服务, 也就是exporter 的抽象,通过 Labels 来选取对应的Service Endpoint,让 Prometheus Server 通过选取的 Service 来获取 Metrics 信息。
- Service:需要监控的服务,简单的说就是 Prometheus 监控的对象。
二、Prometheus-Operator安装
可以使用Helm方式安装,这里选择的是手动安装
下载Prometheus-Operator项目到本地服务器
$ git clone https://github.com/coreos/kube-prometheus.git
$ cd manifests
安装setup目录下的CRD和Operator对象
$ kubectl apply -f setup/
namespace/monitoring created
customresourcedefinition.apiextensions.k8s.io/alertmanagers.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/podmonitors.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/probes.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/prometheuses.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/prometheusrules.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/servicemonitors.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/thanosrulers.monitoring.coreos.com created
clusterrole.rbac.authorization.k8s.io/prometheus-operator created
clusterrolebinding.rbac.authorization.k8s.io/prometheus-operator created
deployment.apps/prometheus-operator created
service/prometheus-operator created
serviceaccount/prometheus-operator created
创建manifests目录下的各类资源
$ kubectl apply -f .
alertmanager.monitoring.coreos.com/main created
secret/alertmanager-main created
service/alertmanager-main created
serviceaccount/alertmanager-main created
.............
$ kubectl get pods -n monitoring
NAME READY STATUS RESTARTS AGE
alertmanager-main-0 1/2 Running 0 2d17h
alertmanager-main-1 1/2 Running 0 2d17h
alertmanager-main-2 1/2 Running 0 2d17h
grafana-86445dccbb-m7kzg 1/1 Running 0 2d17h
kube-state-metrics-5b67d79459-zf27k 3/3 Running 0 2d17h
node-exporter-blx8m 2/2 Running 0 2d17h
node-exporter-zpns2 2/2 Running 0 2d17h
node-exporter-zrd6g 2/2 Running 0 2d17h
prometheus-adapter-66b855f564-mf9mc 1/1 Running 0 2d17h
prometheus-k8s-0 3/3 Running 1 2d17h
prometheus-k8s-1 3/3 Running 1 2d17h
prometheus-operator-78fcb48ccf-sgklz 2/2 Running 0 2d17h
三、通过Ingress访问组件
由于这些资源的默认Service为ClusterIP,集群外部无法访问,我们可以通过使用kubectl edit xxx
命令将Service类型修改为NodePort方式来提供外部访问。
这里使用Ingress 分别为Prometheus,Alertmanager,Grafana创建域名。
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
namespace: monitoring
name: prometheus-ingress
spec:
rules:
- host: k8s.grafana.com
http:
paths:
- backend:
serviceName: grafana
servicePort: 3000
- host: k8s.prometheus.com
http:
paths:
- backend:
serviceName: prometheus-k8s
servicePort: 9090
- host: k8s.alertmanager.com
http:
paths:
- backend:
serviceName: alertmanager-main
servicePort: 9093
创建Ingress对象
$ kubectl create -f ingress.yaml
ingress.extensions/prometheus-ingress created
$ kubectl get ingress -A
NAMESPACE NAME CLASS HOSTS ADDRESS PORTS AGE
default my-nginx <none> nginx.ingress.com 80, 443 2d21h
monitoring prometheus-ingress <none> k8s.grafana.com,k8s.prometheus.com,k8s.alertmanager.com 80 4s
可以看到,已经分别创建了相应的域名,我们在本地的hosts文件添加Ingress主机的IP地址解析即可通过域名访问了。
在这里插入图片描述
在这里插入图片描述
四、添加监控对象
在上面Kube-proemtheus默认监控了一些系统的组件,我们还需要根据实际的业务需求去添加自定义的组件监控,添加自定义监控对象步骤如下:
- 建立一个 ServiceMonitor 对象,用于 Prometheus 添加监控项
- 为 ServiceMonitor 对象关联 metrics 数据接口的一个 Service 对象
- 确保 Service 对象可以正确获取到 metrics 数据
比如对etcd服务进行监控,先创建ServiceMonitor对象
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: etcd-k8s
namespace: monitoring
labels:
k8s-app: etcd-k8s
spec:
jobLabel: k8s-app
endpoints:
- port: port
interval: 15s
selector:
matchLabels:
k8s-app: etcd
namespaceSelector:
matchNames:
- kube-system
定义为:匹配 kube-system 这个命名空间下面的具有k8s-app=etcd
这个 label 标签的 Service,其中jobLabel 表示用于检索 job 任务名称的标签。
创建这个serviceMonitor对象
$ kubectl apply -f prometheus-serviceMonitorEtcd.yaml
servicemonitor.monitoring.coreos.com "etcd-k8s" created
然后再创建一个Etcd的Service 对象
apiVersion: v1
kind: Service
metadata:
name: etcd-k8s
namespace: kube-system
labels:
k8s-app: etcd
spec:
type: ClusterIP
clusterIP: None # 一定要设置 clusterIP:None
ports:
- name: port
port: 2381
---
apiVersion: v1
kind: Endpoints
metadata:
name: etcd-k8s
namespace: kube-system
labels:
k8s-app: etcd
subsets:
- addresses:
- ip: 192.168.16.173 # 指定etcd节点地址,如果是集群则继续向下添加
nodeName: etc-master
ports:
- name: port
port: 2381
上面文件定义为:将后端的Etcd服务通过Endpoints添加到集群,然后为其创建Service对象
创建这个Service对象
$ kubectl apply -f etcd-service.yaml
service/etcd-k8s configured
endpoints/etcd-k8s configured
$ kubectl get svc -n kube-system -l k8s-app=etcd
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
etcd-k8s ClusterIP None <none> 2381/TCP 1d
创建完成后去prommetheus查看targes
[图片上传失败...(image-477e83-1603792328401)]
可以看到2381 端口链接被拒绝,这是因为在创建etcd服务时metrics接口设置为- --listen-metrics-urls=http://127.0.0.1:2381
,我们只需要修改 /etc/kubernetes/manifest/ 目录下面的 etcd.yaml 文件中将上面的listen-metrics-urls
更改成节点 IP 即可:
- --listen-metrics-urls=http://192.168.16.173:2381
修改后etcd会自动重启,然后在去Prometheus查看是否正常
image.png然后在Grafana导入编号为 3070 的 dashboard,就可以获取到 etcd 的监控图表:(grafana默认口令为admin/admin)
在这里插入图片描述
五、自定义报警规则
1. 指定Alertmanager地址
在之前使用部署Prometheus时,我们只需要修改Prometheus下的Prometheus.yaml 配置文件来指定Alertmanager地址即可。现在通过Operator方式部署的Prometheus如何指定呢?我们可以先去Prometheus的web页面上查看Configuration的配置信息
在这里插入图片描述可以看到上面 alertmanagers 的配置是通过 role 为 endpoints 的 kubernetes 的自动发现机制获取的,匹配的是服务名为 alertmanager-main,端口名为 web 的 Service 服务,所以Prometheus就这样指定了Alertmanager的地址。
2. 添加报警规则
在上面的配置中可以看到规则文件的路径为: /etc/prometheus/rules/prometheus-k8s-rulefiles-0/*.yaml
,我们可以进入Prometheus的容器中查看:
$ kubectl exec -it prometheus-k8s-0 /bin/sh -n monitoring
Defaulting container name to prometheus.
Use 'kubectl describe pod/prometheus-k8s-0 -n monitoring' to see all of the containers in this pod.
/prometheus $ ls /etc/prometheus/rules/prometheus-k8s-rulefiles-0/
monitoring-prometheus-k8s-rules.yaml
/prometheus $ cat /etc/prometheus/rules/prometheus-k8s-rulefiles-0/monitoring-pr
ometheus-k8s-rules.yaml
groups:
- name: k8s.rules
rules:
- expr: |
sum(rate(container_cpu_usage_seconds_total{job="kubelet", image!="", container_name!=""}[5m])) by (namespace)
record: namespace:container_cpu_usage_seconds_total:sum_rate
......
而这个文件实际上就是我们之前创建的一个 PrometheusRule 文件包含的内容:
$ cat manifests/prometheus-rules.yaml | head -10
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
labels:
prometheus: k8s
role: alert-rules
name: prometheus-k8s-rules
namespace: monitoring
spec:
groups:
这个文件中有非常重要的一个属性ruleSelector
,用来匹配 rule 规则的过滤器,要求匹配具有 prometheus=k8s
和 role=alert-rules
标签的 PrometheusRule 资源对象。
ruleSelector:
matchLabels:
prometheus: k8s
role: alert-rules
所以我们想要添加规则时,只需要创建一个具有prometheus=k8s
和 role=alert-rules
标签的 PrometheusRule 对象就可以了,比如我们对刚才添加的etcd服务编写一条是否可用的报警规则。
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
labels:
prometheus: k8s
role: alert-rules
name: etcd-rules
namespace: monitoring
spec:
groups:
- name: etcd
rules:
- alert: EtcdClusterUnavailable
annotations:
summary: etcd cluster small
description: If one more etcd peer goes down the cluster will be unavailable
expr: |
count(up{job="etcd"} == 0) > (count(up{job="etcd"}) / 2 - 1)
for: 3m
labels:
severity: critical
创建这个PrometheusRule对象,然后查看Prometheus容器是否有这个报警规则文件
$ kubectl create -f etcd-rules.yaml
prometheusrule.monitoring.coreos.com/etcd-rules created
[root@k8s-master01 manifests]# kubectl exec -it prometheus-k8s-0 /bin/sh -n monitoring
$ kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl kubectl exec [POD] -- [COMMAND] instead.
Defaulting container name to prometheus.
Use 'kubectl describe pod/prometheus-k8s-0 -n monitoring' to see all of the containers in this pod.
/prometheus $ ls /etc/prometheus/rules/prometheus-k8s-rulefiles-0/
monitoring-etcd-rules.yaml monitoring-prometheus-k8s-rules.yaml
然后再去prometheus的web页面查看下
在这里插入图片描述六、配置微信方式报警
现在报警规则有了,但是报警渠道还没有配置,所以下面我们来修改下Alertmanager的配置,首先我们可以去 Alertmanager 的页面上 status 路径下面查看 AlertManager 的配置信息:
在这里插入图片描述
这些配置的来由也是我们之前创建的alertmanger-secret文件。
$ cat manifests/alertmanager-secret.yaml
apiVersion: v1
data: {}
kind: Secret
metadata:
name: alertmanager-main
namespace: monitoring
stringData:
alertmanager.yaml: |-
"global":
"resolve_timeout": "5m"
"inhibit_rules":
- "equal":
- "namespace"
- "alertname"
"source_match":
"severity": "critical"
"target_match_re":
"severity": "warning|info"
- "equal":
- "namespace"
- "alertname"
"source_match":
"severity": "warning"
"target_match_re":
"severity": "info"
"receivers":
- "name": "Default"
- "name": "Watchdog"
- "name": "Critical"
"route":
"group_by":
- "namespace"
"group_interval": "5m"
"group_wait": "30s"
"receiver": "Default"
"repeat_interval": "12h"
"routes":
- "match":
"alertname": "Watchdog"
"receiver": "Watchdog"
- "match":
"severity": "critical"
"receiver": "Critical"
type: Opaque
然后我们就可以通过修改这个yaml文件来指定我们的报警渠道了,比如我们这里将critical级别的报警发送到微信。
apiVersion: v1
data: {}
kind: Secret
metadata:
name: alertmanager-main
namespace: monitoring
stringData:
alertmanager.yaml: |-
"global":
"resolve_timeout": "5m"
"inhibit_rules":
- "equal":
- "namespace"
- "alertname"
"source_match":
"severity": "critical"
"target_match_re":
"severity": "warning|info"
- "equal":
- "namespace"
- "alertname"
"source_match":
"severity": "warning"
"target_match_re":
"severity": "info"
"receivers":
- "name": "Default"
- "name": "Watchdog"
- "name": "Critical"
"wechat_configs": #添加微信的认证
- "corp_id": 'ww314010b4720f24'
"to_party": '1'
"agent_id": '1000002'
"api_secret": '9nmYzEg8X860ZBIoOkToCbh_oNc'
"send_resolved": true
"route":
"group_by":
- "namespace"
"group_interval": "5m"
"group_wait": "30s"
"receiver": "Default"
"repeat_interval": "12h"
"routes":
- "match":
"alertname": "Watchdog"
"receiver": "Watchdog"
- "match":
"severity": "critical"
"receiver": "Critical"
type: Opaque
然后强制更新alertmanager-secret对象
$ kubectl delete -f alertmanager-secret.yaml
ksecret "alertmanager-main" deleted
$ kubectl apply -f alertmanager-secret.yaml
secret/alertmanager-main created
然后查看alertmanger的web页面中的配置信息是否加载
在这里插入图片描述
如果有critical级别的报警,微信就会收到报警信息
在这里插入图片描述
七、自动发现配置
当集群中的Service和Pod越来越多时,我们再手动的为每一个服务创建相应的ServiceMonitor就很麻烦了,所以为解决这个问题,Prometheus Operator 为我们提供了一个额外的抓取配置的来解决这个问题,我们可以通过添加额外的配置来进行服务发现进行自动监控。
新建prometheus-additional.yaml
- job_name: 'kubernetes-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
通过这个文件创建一个对应的 Secret 对象:
$ kubectl create secret generic additional-configs --from-file=prometheus-additional.yaml -n monitoring
secret "additional-configs" created
然后我们需要在声明 prometheus 的资源对象文件中通过additionalScrapeConfigs
属性添加上这个额外的配置:
$ cat prometheus-prometheus.yaml
.................
serviceAccountName: prometheus-k8s
serviceMonitorNamespaceSelector: {}
serviceMonitorSelector: {}
version: v2.20.0
additionalScrapeConfigs:
name: additional-configs
key: prometheus-additional.yaml
添加完成后,更新 prometheus 这个 CRD 资源对象
$ kubectl apply -f prometheus-prometheus.yaml
prometheus.monitoring.coreos.com/k8s configured
然后我们就可以在Prometheus的可视化页面查看是否加载了该配置
在这里插入图片描述但是在 targets 页面下面并没有对应的监控任务,查看 Prometheus 的 Pod 日志:
$ kubectl logs -f prometheus-k8s-0 prometheus -n monitoring
.............
level=error ts=2020-10-27T06:01:30.129Z caller=klog.go:94 component=k8s_client_runtime func=ErrorDepth msg="/app/discovery/kubernetes/kubernetes.go:361: Failed to list *v1.Endpoints: endpoints is forbidden: User \"system:serviceaccount:monitoring:prometheus-k8s\" cannot list resource \"endpoints\" in API group \"\" at the cluster scope"
level=error ts=2020-10-27T06:01:39.194Z caller=klog.go:94 component=k8s_client_runtime func=ErrorDepth msg="/app/discovery/kubernetes/kubernetes.go:362: Failed to list *v1.Service: services is forbidden: User \"system:serviceaccount:monitoring:prometheus-k8s\" cannot list resource \"services\" in API group \"\" at the cluster scope"
这个报错的原因是因为Prometheus绑定了一个名为 prometheus-k8s 的 ServiceAccount 对象,而这个ServiceAccount账户绑定的是一个名为 prometheus-k8s 的 ClusterRole集群角色,查看这个ClusterRole的权限
$ cat prometheus-clusterRole.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus-k8s
rules:
- apiGroups:
- ""
resources:
- nodes/metrics
verbs:
- get
- nonResourceURLs:
- /metrics
verbs:
- get
可以看到这个clusterRole没有对 Service 或者 Pod 的 list 权限,添加上对应权限应该就可以了。
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus-k8s
rules:
- apiGroups:
- ""
resources:
- nodes
- services
- endpoints
- pods
- nodes/proxy
verbs:
- get
- list
- watch
- apiGroups:
- ""
resources:
- configmaps
- nodes/metrics
verbs:
- get
- nonResourceURLs:
- /metrics
verbs:
- get
重建Prometheus的所有对象
$ cd manifests
$ mkdir prometheus
$ mv prometheus-* prometheus
$ cd prometheus
$ kubectl delete -f .
$ kubectl apply -f .
重建完成后就可以看到 targets 页面下面有 kubernetes-endpoints 这个监控任务了:
可以看到,抓取到了
kube-dns
这个Service,这是因为Service 中含有 prometheus.io/scrape=true
这个 annotation,可以查看下kube-dns
的service信息
$ kubectl describe svc kube-dns -n kube-system
Name: kube-dns
Namespace: kube-system
Labels: k8s-app=kube-dns
kubernetes.io/cluster-service=true
kubernetes.io/name=KubeDNS
Annotations: prometheus.io/port: 9153
prometheus.io/scrape: true
Selector: k8s-app=kube-dns
Type: ClusterIP
IP: 10.96.0.10
Port: dns 53/UDP
TargetPort: 53/UDP
Endpoints: 10.244.0.2:53,10.244.0.3:53
Port: dns-tcp 53/TCP
TargetPort: 53/TCP
Endpoints: 10.244.0.2:53,10.244.0.3:53
Port: metrics 9153/TCP
TargetPort: 9153/TCP
Endpoints: 10.244.0.2:9153,10.244.0.3:9153
Session Affinity: None
Events: <none>
所以我们在创建Service的时候就要添加 prometheus.io/scrape=true
这个annotations,才可以被Prometheus的服务发现抓取到,添加方式如下:
apiVersion: v1
kind: Service
metadata:
annotations:
prometheus.io/port: "9153"
prometheus.io/scrape: "true"
creationTimestamp: "2020-10-26T08:39:47Z"
labels:
k8s-app: kube-dns
kubernetes.io/cluster-service: "true"
............
注意: 虽然应用添加了这个annotations信息,Prometheus也可以抓取到这个目标,但前提是这个应用必须提供了metics接口来暴露指标信息,可以通过 prometheus.io/port: "9153"
这个annotations来指定metics接口,否则prometheus采集不到metics信息,则会认为这个服务是DOWN
状态。
八、使用NFS持久化数据
在上面我们重建了Prometheus的Pod,查看时会发现之前的数据都丢失了,这是因为我们通过 prometheus 这个 CRD 创建的 Prometheus 并没有做数据的持久化,
$ kubectl get pod prometheus-k8s-0 -n monitoring -o yaml
......
volumeMounts:
- mountPath: /etc/prometheus/config_out
name: config-out
readOnly: true
- mountPath: /prometheus
name: prometheus-k8s-db
......
volumes:
......
- emptyDir: {}
name: prometheus-k8s-db
......
可以看到 Prometheus 的数据目录 /prometheus 实际上是通过emptyDir
进行挂载的,而emptyDir的设计就是应用删除后,数据也会删除,所以我们需要对Prometheus的数据进行持久化。
Prometheus是通过 Statefulset 控制器进行部署的,所以我们这里通过 storageclass 来做数据持久化,这里我们选择之前搭建的NFS StorageClass作为数据持久化。
在Prometheus的CRD对象中添加storage属性:
$ cat prometheus-prometheus.yaml
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
labels:
prometheus: k8s
name: k8s
namespace: monitoring
spec:
alerting:
alertmanagers:
- name: alertmanager-main
namespace: monitoring
port: web
storage: #持久化存储
volumeClaimTemplate:
spec:
storageClassName: nfs-data-db
resources:
requests:
storage: 10Gi
image: quay.io/prometheus/prometheus:v2.20.0
nodeSelector:
kubernetes.io/os: linux
podMonitorNamespaceSelector: {}
podMonitorSelector: {}
probeNamespaceSelector: {}
probeSelector: {}
replicas: 2
resources:
requests:
memory: 400Mi
ruleSelector:
matchLabels:
prometheus: k8s
role: alert-rules
securityContext:
fsGroup: 2000
runAsNonRoot: true
runAsUser: 1000
serviceAccountName: prometheus-k8s
serviceMonitorNamespaceSelector: {}
serviceMonitorSelector: {}
version: v2.20.0
additionalScrapeConfigs:
name: additional-configs
key: prometheus-additional.yaml
更新prometheus CRD 资源
$ kubectl apply -f prometheus-prometheus.yaml
prometheus.monitoring.coreos.com/k8s configured
查看PVC状态
$ kubectl get pvc -n monitoring
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
prometheus-k8s-db-prometheus-k8s-0 Bound pvc-8e73e8b2-1e98-452c-8aaa-a9ba694fe234 10Gi RWO nfs-data-db 2m
prometheus-k8s-db-prometheus-k8s-1 Bound pvc-fe817cdd-812f-489e-b82c-d5de7f0dbf93 10Gi RWO nfs-data-db 2m