玩转大数据大数据大数据,机器学习,人工智能

Spark + Hbase 百亿级流量实时分析统计 之 小巧高性

2019-03-25  本文已影响11人  大猪大猪

在上一篇文章 大猪 已经介绍了日志存储设计方案 ,我们数据已经落地到数据中心上了,那接下来如何ETL呢?毕竟可是生产环境级别的,可不能乱来。其实只要解决几个问题即可,不必要引入很大级别的组件来做,当然了各有各的千秋,本文主要从 易懂小巧简洁高性能 这三个方面去设计出发点,顺便还实现了一个精巧的 Filebeat

设计

loghub功能
要实现的功能就是扫描每天的增量日志并写入Hbase中

需要攻克如下几个小难题

  1. 需要把文件中的每一行数据都取出来
  2. 能处理超过10G以上的大日志文件,并且只能占用机器一定的内存,越小越好
  3. 从上图可以看到 标黄 的是已经写入Hbase的数据,不能重复读取
  4. 非活跃文件不能扫,因为文件过多会影响整体读取IO性能
  5. 读取中的过程要保证增量数据不能录入,因为要保证offset的时候写入mysql稳定不跳跃

实现

大猪 根据线上的生产环境一一把上面的功能重新分析给实现一下。

从第一点看还是比较简单的嘛?但是我们要结合上面的 5 个问题来看才行。

总结一句话就是:要实现一个高性能而且能随时重启继续工作的 loghub ETL 程序

实际也必需这样做,因为生产环境容不得马虎,不然就等着被BOSS

实现过程

需要有一个读取所有日志文件方法

def files(file: File, filter: File => Boolean): Seq[File] = {
  val listFiles = file.listFiles()
  listFiles.filter(filter) ++ listFiles.filter(_.isDirectory).flatMap(f => files(f, filter))
}

还要实现一个保存并读取文件进度的方法

//读取索引文件
def seeks(): util.Map[String, Long] = {
    val seekStr = Source.fromFile(seekFile)
      .getLines.mkString
    if (seekStr.nonEmpty && seekStr != "") {
      read[Map[String, Long]](seekStr)
        .asJava
    } else new util.HashMap[String, Long]()
  }
//读取单个文件索引
def readSeek(filePath: String): Long = {
    val fileMd5 = MD5Hash.getMD5AsHex(filePath.getBytes)
    val list = seeks().asScala.filter(_._1.equals(fileMd5))
    if (list.isEmpty) {
      writeSeek(Map(filePath -> 0L).asJava)
      0L
    } else list.head._2.toLong
  }
//把文件索引更新到索引文件
def writeSeek(filePaths: util.Map[String, Long]): Unit = synchronized {
    val writer = new PrintWriter(seekFile)
    val convertList = filePaths.asScala.map(x => MD5Hash.getMD5AsHex(x._1.getBytes) -> x._2)
    val sets = offsets.asScala ++ convertList
    val seeksStr = write(sets)
    writer.write(seeksStr)
    writer.flush()
    writer.close()
    offsets.putAll(convertList.asJava)
  }

由于不能把一个日志文件全部读入内存进行处理
所以还需要一个能根据索引一行一行接着读取数据的方法

def lines(file: File, startSeek: Long, endSeek: Long, finish: () => Unit): Iterator[String] = {
    new Iterator[String] {
      //使用java的随机文件读写类,性能非常高
      var rfile = new RandomAccessFile(file, "r")
      //设置上次读取的索引结束位置
      rfile.seek(startSeek)
      var nextLine: String = _
      var readSeek: Long = 0
      def appendSeek(): Unit = {
        if (nextLine != null) {
          nextLine = new String(nextLine.getBytes("ISO-8859-1"), "utf-8")
          readSeek += nextLine.getBytes.length
        }
      }
      override def hasNext: Boolean = {
        if (rfile == null) return false
        nextLine = rfile.readLine()
        appendSeek()
        val hl = nextLine != null && readSeek <= (endSeek - startSeek)
        if (!hl) {
          rfile.close()
          rfile = null
          finish()
        }
        hl
      }
      override def next(): String = {
        readSeek += 1 //append '\n' byte length
        nextLine
      }
    }
  }

还有一个Hbase的连接池小工具

object HbasePool {
  println("connecting.")
  private val connection: Connection = ConnectionFactory.createConnection(ConfUtil.createConf)
  println("connected.")
  //初始化好10个连接等待使用
  private val poolSize = 10
  private val pools = new util.HashMap[Int, BufferedMutator]()

  (0 until poolSize).foreach(
    x => {
      println("table connecting.")
      val params = new BufferedMutatorParams(TableName.valueOf("test_arc"))
      //3秒的提交数据间隔,如果程序很快请把这个值改小一点
      params.setWriteBufferPeriodicFlushTimeoutMs(TimeUnit.SECONDS.toMillis(3))
      params.setWriteBufferPeriodicFlushTimerTickMs(100)
      params.maxKeyValueSize(10485760)
      //客户端2M提交缓存
      params.writeBufferSize(1024 * 1024 * 2)
      val table = connection.getBufferedMutator(params)

      pools.put(x, table)
      println("table connected.")
    }
  )

  def getTable: BufferedMutator = {
    pools.get(Random.nextInt(poolSize))
  }
}

几个核心方法已经写完了,接着是我们的主程序

def run(logPath: File, defaultOffsetDay: String): Unit = {
    val sdfstr = Source.fromFile(seekDayFile).getLines().mkString
    val offsetDay = Option(if (sdfstr == "") null else sdfstr)
    
    //读取设置读取日期的倒数一天之后的日期文件夹
    val noneOffsetFold = logPath
      .listFiles()
      .filter(_.getName >= LocalDate.parse(offsetDay.getOrElse(defaultOffsetDay)).minusDays(1).toString)
      .sortBy(f => LocalDate.parse(f.getName).toEpochDay)

    //读取文件夹中的所有日志文件,并取出索引进行匹配
    val filesPar = noneOffsetFold
      .flatMap(files(_, file => file.getName.endsWith(".log")))
      .map(file => (file, seeks().getOrDefault(MD5Hash.getMD5AsHex(file.getAbsolutePath.getBytes()), 0), file.length()))
      .filter(tp2 => {
        //过滤出新文件,与有增量的日志文件
        val fileMd5 = MD5Hash.getMD5AsHex(tp2._1.getAbsolutePath.getBytes())
        val result = offsets.asScala.filter(m => fileMd5.equals(m._1))
        result.isEmpty || tp2._3 > result.head._2
      })
      .par

    filesPar.tasksupport = pool

    val willUpdateOffset = new util.HashMap[String, Long]()
    val formatter = DateTimeFormatter.ofPattern("yyyyMMddHHmmssSSS")
    var logTime:String = null
    filesPar
      .foreach(tp3 => {
        val hbaseClient = HbasePool.getTable
        //因为不能全量读取数据,所有只能一条一条读取,批量提出交给HbaseClient的客户端的mutate方式优雅处理
        //foreach 里面的部分就是我们的业务处理部分
        lines(tp3._1, tp3._2, tp3._3, () => {
          willUpdateOffset.put(tp3._1.getAbsolutePath, tp3._3)
          offsets.put(MD5Hash.getMD5AsHex(tp3._1.getAbsolutePath.getBytes), tp3._3)
        })
          .foreach(line => {
            val jsonObject = parse(line)
            val time = (jsonObject \ "time").extract[Long]
            val data = jsonObject \ "data"
            val dataMap = data.values.asInstanceOf[Map[String, Any]]
              .filter(_._2 != null)
              .map(x => x._1 -> x._2.toString)

            val uid = dataMap("uid")
            logTime = time.getLocalDateTime.toString
            val rowkey = uid.take(2) + "|" + time.getLocalDateTime.format(formatter) + "|" + uid.substring(2, 8)

            val row = new Put(Bytes.toBytes(rowkey))
            dataMap.foreach(tp2 => row.addColumn(Bytes.toBytes("info"), Bytes.toBytes(tp2._1), Bytes.toBytes(tp2._2)))
            hbaseClient.mutate(row)
          })
        hbaseClient.flush()
      })
    //更新索引到文件上
    writeSeek(willUpdateOffset)
    //更新索引日期到文件上
    writeSeekDay(noneOffsetFold.last.getName)
    //把 logTime offset 写到mysql中,方便Spark+Hbase程序读取并计算
  }

程序很精简,没有任何没用的功能在里面,线上的生产环境就应该是这子的了。
大家还可以根据需求加入程序退出发邮件通知功能之类的。
真正去算了一下也就100行功能代码,而且占用极小的内存,都不到100M,很精很精。

传送门 完整ETL程序源码

上一篇下一篇

猜你喜欢

热点阅读