DataX系列7-HdfsReader介绍

2021-12-17  本文已影响0人  只是甲

一. 快速介绍

  HdfsReader提供了读取分布式文件系统数据存储的能力。在底层实现上,HdfsReader获取分布式文件系统上文件的数据,并转换为DataX传输协议传递给Writer。

  目前HdfsReader支持的文件格式有textfile(text)、orcfile(orc)、rcfile(rc)、sequence file(seq)和普通逻辑二维表(csv)类型格式的文件,且文件内容存放的必须是一张逻辑意义上的二维表。

  HdfsReader需要Jdk1.7及以上版本的支持。

二. 功能与限制

  HdfsReader实现了从Hadoop分布式文件系统Hdfs中读取文件数据并转为DataX协议的功能。textfile是Hive建表时默认使用的存储格式,数据不做压缩,本质上textfile就是以文本的形式将数据存放在hdfs中,对于DataX而言,HdfsReader实现上类比TxtFileReader,有诸多相似之处。orcfile,它的全名是Optimized Row Columnar file,是对RCFile做了优化。据官方文档介绍,这种文件格式可以提供一种高效的方法来存储Hive数据。HdfsReader利用Hive提供的OrcSerde类,读取解析orcfile文件的数据。

目前HdfsReader支持的功能如下:

  1. 支持textfile、orcfile、rcfile、sequence file和csv格式的文件,且要求文件内容存放的是一张逻辑意义上的二维表。

  2. 支持多种类型数据读取(使用String表示),支持列裁剪,支持列常量

  3. 支持递归读取、支持正则表达式("*"和"?")。

  4. 支持orcfile数据压缩,目前支持SNAPPY,ZLIB两种压缩方式。

  5. 多个File可以支持并发读取。

  6. 支持sequence file数据压缩,目前支持lzo压缩方式。

  7. csv类型支持压缩格式有:gzip、bz2、zip、lzo、lzo_deflate、snappy。

  8. 目前插件中Hive版本为1.1.1,Hadoop版本为2.7.1(Apache[为适配JDK1.7],在Hadoop 2.5.0, Hadoop 2.6.0 和Hive 1.2.0测试环境中写入正常;其它版本需后期进一步测试;

  9. 支持kerberos认证(注意:如果用户需要进行kerberos认证,那么用户使用的Hadoop集群版本需要和hdfsreader的Hadoop版本保持一致,如果高于hdfsreader的Hadoop版本,不保证kerberos认证有效)

我们暂时不能做到:

  1. 单个File支持多线程并发读取,这里涉及到单个File内部切分算法。二期考虑支持。
    目前还不支持hdfs HA;

三. 功能说明

3.1 配置样例

{
    "job": {
        "setting": {
            "speed": {
                "channel": 3
            }
        },
        "content": [
            {
                "reader": {
                    "name": "hdfsreader",
                    "parameter": {
                        "path": "/user/hive/warehouse/mytable01/*",
                        "defaultFS": "hdfs://xxx:port",
                        "column": [
                               {
                                "index": 0,
                                "type": "long"
                               },
                               {
                                "index": 1,
                                "type": "boolean"
                               },
                               {
                                "type": "string",
                                "value": "hello"
                               },
                               {
                                "index": 2,
                                "type": "double"
                               }
                        ],
                        "fileType": "orc",
                        "encoding": "UTF-8",
                        "fieldDelimiter": ","
                    }

                },
                "writer": {
                    "name": "streamwriter",
                    "parameter": {
                        "print": true
                    }
                }
            }
        ]
    }
}

3.2 参数说明(各个配置项值前后不允许有空格)

3.2.1 path

3.2.2 defaultFS

3.2.3 fileType

3.2.4 column

3.2.5 fieldDelimiter

3.2.6 encoding

3.2.7 nullFormat

3.2.8 haveKerberos

3.2.9 kerberosKeytabFilePath

3.2.10 kerberosPrincipal

3.2.11 compress

3.2.12 hadoopConfig

 "hadoopConfig":{
         "dfs.nameservices": "testDfs",
         "dfs.ha.namenodes.testDfs": "namenode1,namenode2",
         "dfs.namenode.rpc-address.aliDfs.namenode1": "",
         "dfs.namenode.rpc-address.aliDfs.namenode2": "",
         "dfs.client.failover.proxy.provider.testDfs": "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider"
 }

3.2.13 csvReaderConfig

常见配置:

"csvReaderConfig":{
        "safetySwitch": false,
        "skipEmptyRecords": false,
        "useTextQualifier": false
}

所有配置项及默认值,配置时 csvReaderConfig 的map中请严格按照以下字段名字进行配置:

boolean caseSensitive = true;
char textQualifier = 34;
boolean trimWhitespace = true;
boolean useTextQualifier = true;//是否使用csv转义字符
char delimiter = 44;//分隔符
char recordDelimiter = 0;
char comment = 35;
boolean useComments = false;
int escapeMode = 1;
boolean safetySwitch = true;//单列长度是否限制100000字符
boolean skipEmptyRecords = true;//是否跳过空行
boolean captureRawRecord = true;

3.3 类型转换

  由于textfile和orcfile文件表的元数据信息由Hive维护并存放在Hive自己维护的数据库(如mysql)中,目前HdfsReader不支持对Hive元数据数据库进行访问查询,因此用户在进行类型转换的时候,必须指定数据类型,如果用户配置的column为"*",则所有column默认转换为string类型。HdfsReader提供了类型转换的建议表如下:


image.png

其中:

  1. Long是指Hdfs文件文本中使用整形的字符串表示形式,例如"123456789"。
  2. Double是指Hdfs文件文本中使用Double的字符串表示形式,例如"3.1415"。
  3. Boolean是指Hdfs文件文本中使用Boolean的字符串表示形式,例如"true"、"false"。不区分大小写。
  4. Date是指Hdfs文件文本中使用Date的字符串表示形式,例如"2014-12-31"。

特别提醒:
Hive支持的数据类型TIMESTAMP可以精确到纳秒级别,所以textfile、orcfile中TIMESTAMP存放的数据类似于"2015-08-21 22:40:47.397898389",如果转换的类型配置为DataX的Date,转换之后会导致纳秒部分丢失,所以如果需要保留纳秒部分的数据,请配置转换类型为DataX的String类型。

3.4 按分区读取

  Hive在建表的时候,可以指定分区partition,例如创建分区partition(day="20150820",hour="09"),对应的hdfs文件系统中,相应的表的目录下则会多出/20150820和/09两个目录,且/20150820是/09的父目录。了解了分区都会列成相应的目录结构,在按照某个分区读取某个表所有数据时,则只需配置好json中path的值即可。

  比如需要读取表名叫mytable01下分区day为20150820这一天的所有数据,则配置如下:

"path": "/user/hive/warehouse/mytable01/20150820/*"

参考:

  1. https://github.com/alibaba/DataX/blob/master/hdfsreader/doc/hdfsreader.md
上一篇下一篇

猜你喜欢

热点阅读