二线制I2C CMOS串行EEPROM续
2018-05-05 本文已影响0人
li_li_li_1202
本篇文章主要介绍一下EEPROM读写器件的设计思路,以及未来测试此器件搭建的测试平台。
1、串行EEPROM读写器件
我们要设计一个串行EEPROM读写器件,这要求我们设计出能够综合的Verilog HDL代码。所谓串行EEPROM读写器件就是指将我们平常输入信号的输入习惯产生符合I2C串行总线的数据。我们给此模块命名为EEPROM_WR。
要搭建测试平台才能够对设计进行验证,这里搭建的测试平台,只用做行为级描述,不一定符合可综合的设计要求。搭建测试平台需要信号输入模块signal和EEPROM模块。
EEPROM读写电路及其测试电路.png
下面就这三个模块做一一的详细介绍
EEPROM
我们理想的EEPROM数据的读写规则就是按照I2C总线给出的规则进行。在这里,我们先贴出相应的代码,然后进行分析。
`timescale 1ns/1ns
`define timeslice 100
module EEPROM(scl,sda);
input scl;
inout sda;
reg out_flag;
reg [7:0] memory [2047:0];
reg [10:0] address;
reg [7:0] memory_buf;
reg [7:0] sda_buf;
reg [7:0] shift;
reg [7:0] addr_byte;
reg [7:0] ctrl_byte;
reg [1:0] state;
integer i;
parameter r7=8'b10101111, w7=8'b10101110,
r6=8'b10101101, w6=8'b10101100,
r5=8'b10101011, w5=8'b10101010,
r4=8'b10101001, w4=8'b10101000,
r3=8'b10100111, w3=8'b10100110,
r2=8'b10100101, w2=8'b10100100,
r1=8'b10100011, w1=8'b10100010,
r0=8'b10100001, w0=8'b10100000;
assign sda=(out_flag==1)? sda_buf[7]:1'bz; //sda线上作为输出
initial //初始化
begin
addr_byte=0;
ctrl_byte=0;
out_flag=0;
sda_buf=0;
state=2'b00;
memory_buf=0;
address=0;
shift=0;
for(i=0;i<=2047;i=i+1)
memory[i]=0;
end
always @(negedge sda) //scl为高电平,sda的下降沿,表示启动信号
begin
if(scl==1)
begin
state=state+1;
if(state==2'b11) //读操作的另一次启动信号,此时已经完成了从sda总线上读控制字和读地址的操作。
disable write_to_EEPROM;
end
end
always@(posedge sda) //仅仅跟随在启动信号之后的触发条件,因为控制字是1010XXXX,所以sda的上升沿就跳入此模块。
begin
if(scl==1)
stop_W_R;
else
begin
casex(state)
2'b01: begin
read_in;
if(ctrl_byte==w7||ctrl_byte==w6||ctrl_byte==w5||ctrl_byte==w4||ctrl_byte==w3||ctrl_byte==w2||ctrl_byte==w1||ctrl_byte==w0)
begin
state=2'b10; //从sda上读取写控制字和地址
write_to_EEPROM; //将sda上的数据写如EEPROM.
end
else
state=2'b00;
end
2'b11: read_from_EEPROM; // 写控制字,读数据
default: state=2'b00;
endcase
end
end
task shift_in; //总共消耗9个scl周期,前8个用于读数据,将sda读出,最后一个用于应答位的产生,sda被驱动赋值。
output[7:0] shift;
begin
@(posedge scl) shift[7]=sda;
@(posedge scl) shift[6]=sda;
@(posedge scl) shift[5]=sda;
@(posedge scl) shift[4]=sda;
@(posedge scl) shift[3]=sda;
@(posedge scl) shift[2]=sda;
@(posedge scl) shift[1]=sda;
@(posedge scl) shift[0]=sda;
@(negedge scl) //最后这两个scl的下降沿是输出sda,用于应答信号,详细可参考波形1.
begin
#`timeslice
out_flag=1;
sda_buf=0; // 应答位0.
end
@(negedge scl)
begin
#`timeslice
out_flag=0;
end
end
endtask
task read_in;
begin
shift_in(ctrl_byte);
shift_in(addr_byte);
end
endtask
task shift_out;//将sda_buf上的数据写到总线上去,共消耗9个scl时钟周期,其中前8个时钟周期是将sdf_buf的内容赋值到sda中去。
begin
out_flag=1;
for(i=6;i>=0;i=i-1)
begin
@(negedge scl)
#`timeslice
sda_buf=sda_buf<<1;
end
@(negedge scl)
#`timeslice
sda_buf[7]=1;
@(negedge scl)
#`timeslice
out_flag=0;
end
endtask
task stop_W_R;
begin
state=2'b00;
addr_byte=0;
ctrl_byte=0;
out_flag=0;
sda_buf=0;
end
endtask
task write_to_EEPROM; //将sda上的数据写入到EEPROM指定的地址中。
begin
shift_in(memory_buf);
address={ctrl_byte[3:1],addr_byte};
memory[address]=memory_buf;
$display("EEPROM-----memory[%0h]=%0h",address,memory[address]);
state=2'b00;
end
endtask
task read_from_EEPROM; //将EEPROM中指定地址的值放入sda总线上。
begin
shift_in(ctrl_byte);
if(ctrl_byte==r7||ctrl_byte==r6||ctrl_byte==r5||ctrl_byte==r4||ctrl_byte==r3||ctrl_byte==r2||ctrl_byte==r1||ctrl_byte==r0)
begin
address={ctrl_byte[3:1],addr_byte};
sda_buf=memory[address];
shift_out;
state=2'b00;
end
end
endtask
endmodule
写操作.png
读操作.png
EEPROM_WR
EEPROM读写器件我们要求设计成可综合的设计风格代码,它接受来自信号源模型产生的读信号、写信号、并行地址信号和并行数据信号,并把它们转换成相应的串行信号发送到EEPROM的行为模型中去。
这部分主要由两部分组成:一部分是开关组合电路,另一部分是控制时序电路。
EEPROM读写器的结构.png
电路上的同步采用有限状态机的设计方法实现,程序上则采用的是一个有限状态机的嵌套结构,由主状态机和从状态机通过由控制总线启动的总线在不同的输入信号下构成不同功能的较为复杂的有限状态机,这个有限状态机只有唯一的驱动时钟clk。 EEPROM读写器的状态机.png
写状态由5个状态完成,读状态由7个状态完成。在本代码中,我们选择了利用独热码对状态机进行编码,若改变状态编码,只需要改变程序中的parameter定义即可。
下面就代码结合波形,我给大家做一下简要的分析。
本模块以状态转移为框架,读写过程分为三步开始、读/写、结束。在读写过程中,涉及到串联转并联、并联转串联的任务。能够清楚地掌握何时进行开关的打开和关闭是设计成功的关键步骤。
module EEPROM_WR(
sda,
scl,
ack,
reset,
clk,
wr,
rd,
addr,
data
);
input clk,reset,wr,rd;
input[10:0]addr;
output scl,ack;
inout sda;
inout[7:0]data;
reg scl;
reg ack;
reg wf,rf;
reg ack_f;
reg[1:0] head_buf;
reg[1:0] stop_buf;
reg[7:0] storage_buf;
reg[8:0] w_state;
reg[9:0] r_state;
reg[2:0] head_state;
reg[2:0] stop_state;
reg[10:0] main_state;
reg[7:0] data_from_sda;
reg link_sda,link_read,link_write,link_head,link_stop;
wire sda1,sda2,sda3,sda4;
assign sda1=(link_head==1)? head_buf[1] : 1'b0; //开始
assign sda2=(link_stop==1)? stop_buf[1] : 1'b0; //结束
assign sda3=(link_write==1)? storage_buf[7] : 1'b0;//数据的输出
assign sda4=sda1|sda2|sda3; //sda线上的输出数据
assign sda=(link_sda==1)? sda4 : 1'bz;
assign data=(link_read==1'b1)? data_from_sda : 8'hzz;
parameter idle = 11'b00000000001, //主状态机
ready = 11'b00000000010,
write_start = 11'b00000000100,
ctrl_write = 11'b00000001000,
addr_write = 11'b00000010000,
data_write = 11'b00000100000,
read_start = 11'b00001000000,
ctrl_read = 11'b00010000000,
data_read = 11'b00100000000,
stop = 11'b01000000000,
ackn = 11'b10000000000;
parameter data_to_sda_7 = 9'b000000001, //并联转串联
data_to_sda_6 = 9'b000000010,
data_to_sda_5 = 9'b000000100,
data_to_sda_4 = 9'b000001000,
data_to_sda_3 = 9'b000010000,
data_to_sda_2 = 9'b000100000,
data_to_sda_1 = 9'b001000000,
data_to_sda_0 = 9'b010000000,
data_to_sda_end = 9'b100000000;
parameter sda_to_data_begin = 10'b0000000001, //串联转并联
sda_to_data_7 = 10'b0000000010,
sda_to_data_6 = 10'b0000000100,
sda_to_data_5 = 10'b0000001000,
sda_to_data_4 = 10'b0000010000,
sda_to_data_3 = 10'b0000100000,
sda_to_data_2 = 10'b0001000000,
sda_to_data_1 = 10'b0010000000,
sda_to_data_0 = 10'b0100000000,
sda_to_data_end = 10'b1000000000;
parameter head_begin = 3'b001, //开始状态
head_bit = 3'b010,
head_end = 3'b100;
parameter stop_begin = 3'b001, // 结束状态
stop_bit = 3'b010,
stop_end = 3'b100;
task serial_to_perallel;
begin
casex(r_state)
sda_to_data_begin: begin
r_state <= sda_to_data_7;
link_sda<=1'b0;
end
sda_to_data_7 : if(scl)
begin
data_from_sda[7]<=sda;
r_state<=sda_to_data_6;
end
else
r_state<=sda_to_data_7;
sda_to_data_6 : if(scl)
begin
data_from_sda[6]<=sda;
r_state<=sda_to_data_5;
end
else
r_state<=sda_to_data_6;
sda_to_data_5 : if(scl)
begin
data_from_sda[5]<=sda;
r_state<=sda_to_data_4;
end
else
r_state<=sda_to_data_5;
sda_to_data_4 : if(scl)
begin
data_from_sda[4]<=sda;
r_state<=sda_to_data_3;
end
else
r_state<=sda_to_data_4;
sda_to_data_3 : if(scl)
begin
data_from_sda[3]<=sda;
r_state<=sda_to_data_2;
end
else
r_state<=sda_to_data_3;
sda_to_data_2 : if(scl)
begin
data_from_sda[2]<=sda;
r_state<=sda_to_data_1;
end
else
r_state<=sda_to_data_2;
sda_to_data_1 : if(scl)
begin
data_from_sda[1]<=sda;
r_state<=sda_to_data_0;
end
else
r_state<=sda_to_data_1;
sda_to_data_0 : if(scl)
begin
data_from_sda[0]<=sda;
r_state<=sda_to_data_end;
end
else
r_state<=sda_to_data_0;
sda_to_data_end : if(scl)
begin
link_read<=1'b1;
// link_sda<=1'b0;
ack_f<=1'b1;
r_state<=sda_to_data_7;
end
else
r_state<=sda_to_data_end;
/* default: begin
link_read<=1'b0;
r_state<=sda_to_data_7;
end*/
endcase
end
endtask
task perallel_to_serial;
begin
casex(w_state)
data_to_sda_7: if(!scl)
begin
link_sda<=1'b1;
link_write<=1'b1;
w_state<=data_to_sda_6;
end
else
w_state<=data_to_sda_7;
data_to_sda_6: if(!scl)
begin
link_sda<=1'b1;
link_write<=1'b1;
storage_buf<=storage_buf<<1;
w_state<=data_to_sda_5;
end
else
w_state<=data_to_sda_6;
data_to_sda_5: if(!scl)
begin
storage_buf<=storage_buf<<1;
w_state<=data_to_sda_4;
end
else
w_state<=data_to_sda_5;
data_to_sda_4: if(!scl)
begin
storage_buf<=storage_buf<<1;
w_state<=data_to_sda_3;
end
else
w_state<=data_to_sda_4;
data_to_sda_3: if(!scl)
begin
storage_buf<=storage_buf<<1;
w_state<=data_to_sda_2;
end
else
w_state<=data_to_sda_3;
data_to_sda_2: if(!scl)
begin
storage_buf<=storage_buf<<1;
w_state<=data_to_sda_1;
end
else
w_state<=data_to_sda_2;
data_to_sda_1: if(!scl)
begin
storage_buf<=storage_buf<<1;
w_state<=data_to_sda_0;
end
else
w_state<=data_to_sda_1;
data_to_sda_0: if(!scl)
begin
storage_buf<=storage_buf<<1;
w_state<=data_to_sda_end;
end
else
w_state<=data_to_sda_0;
data_to_sda_end: if(!scl)
begin
ack_f<=1'b1;
link_sda<=1'b0;
link_write<=1'b0;
end
//else
// w_state<=data_to_sda_end;
endcase
end
endtask
task head;
begin
casex(head_state)
head_begin:if(!scl)
begin
link_write<=1'b0;
link_sda<=1'b1;
link_head<=1'b1;
head_state<=head_bit;
end
else
head_state<=head_begin;
head_bit:if(scl)
begin
ack_f<=1'b1;
head_buf<=head_buf<<1;
head_state<=head_end;
end
else
head_state<=head_bit;
head_end:if(!scl)
begin
link_write<=1'b0;
link_head<=1'b0;
end
else
head_state<=head_end;
endcase
end
endtask
task stop_1;
begin
casex(stop_state)
stop_begin: if(!scl)
begin
link_sda<=1'b1;
link_stop<=1'b1;
//link_write<=1'b0;
stop_state<=stop_bit;
end
else
stop_state<=stop_begin;
stop_bit: if(scl)
begin
stop_buf<=stop_buf<<1;
stop_state<=stop_end;
end
else
stop_state<=stop_bit;
stop_end: if(!scl)
begin
link_sda<=1'b0;
link_stop<=1'b0;
//link_write<=1'b0;
ack_f<=1'b1;
end
else
stop_state<=stop_end;
endcase
end
endtask
always@(negedge clk) //产生scl
begin
if(reset)
scl<=0;
else
scl<=~scl;
end
always@(posedge clk)
if(reset)
begin
link_read<=1'b0;
link_write<=1'b0;
link_head<=1'b0;
link_stop<=1'b0;
link_sda<=1'b0;
ack=1'b0;
ack_f=1'b0;
head_buf<=2'b00;
stop_buf<=2'b00;
wf<=1'b0;
rf<=1'b0;
main_state<=idle;
end
else
begin
casex(main_state)
idle: begin
link_read<=1'b0;
link_write<=1'b0;
link_head<=1'b0;
link_stop<=1'b0;
link_sda<=1'b0;
if(wr)
begin
wf<=1'b1;
main_state<=ready;
end
else if(rd)
begin
rf<=1'b1;
main_state<=ready;
end
else
begin
rf<=1'b0;
wf<=1'b0;
main_state<=idle;
end
end
ready: begin
link_head<=1'b1;
link_sda<=1'b1;
head_buf<=2'b10;
stop_buf<=2'b01;
head_state<=head_begin;
main_state<=write_start;
end
write_start: if(ack_f==1'b0)
head;
else
begin
storage_buf<={1'b1,1'b0,1'b1,1'b0,addr[10:8],1'b0};
link_head<=1'b0;
link_write<=1'b1;
ack_f<=1'b0;
w_state<=data_to_sda_6;
main_state<=ctrl_write;
end
ctrl_write: if(ack_f==1'b0)
perallel_to_serial;
else
begin
w_state<=data_to_sda_7;
ack_f<=1'b0;
storage_buf<=addr[7:0];
main_state<=addr_write;
end
addr_write: if(ack_f==1'b0)
perallel_to_serial;
else if(wf==1'b1)
begin
ack_f<=1'b0;
main_state<=data_write;
storage_buf<=data;
w_state<=data_to_sda_7;
end
else if(rf==1'b1)
begin
ack_f<=1'b0;
main_state<=read_start;
head_state<=head_begin;
head_buf<=2'b10;
end
data_write: if(ack_f==1'b0)
perallel_to_serial;
else
begin
ack_f<=1'b0;
main_state<=stop;
stop_state<=stop_begin;
// link_write<=1'b0;
end
read_start:if(ack_f==1'b0)
head;
else
begin
ack_f<=1'b0;
main_state<=ctrl_read;
link_head<=1'b0;
storage_buf<={1'b1,1'b0,1'b1,1'b0,addr[10:8],1'b1};
link_write<=1'b1;
link_sda<=1'b1;
w_state<=data_to_sda_6;
end
ctrl_read: if(ack_f==1'b0)
perallel_to_serial;
else
begin
ack_f<=1'b0;
link_write<=1'b0;
link_sda<=1'b0;
r_state<=sda_to_data_begin;
main_state<=data_read;
end
data_read: if(ack_f==1'b0)
serial_to_perallel;
else
begin
ack_f<=1'b0;
main_state<=stop;
stop_state<=stop_bit;
link_stop<=1'b1;
link_sda<=1'b1;
end
stop: if(ack_f==1'b0)
stop_1;
else
begin
ack<=1'b1;
ack_f<=1'b0;
main_state<=ackn;
end
ackn: begin
ack<=1'b0;
wf<=1'b0;
rf<=1'b0;
main_state<=idle;
end
default:main_state<=idle;
endcase
end
endmodule
这里我想特别强调一下双向端口sda,究竟何时是输入端口何时是输出端口呢?在进行写入数据和控制字的写入时是输出端口,在进行应答位和数据读出时是接受外部数据的输入端口。
- link_sda是控制sda写入的开关
-
out_flag来自EEPROM的内部信号用于控制sda的输入。
写过程双向sda信号的驱动.png 读过程双向sda信号的驱动.png
通过读写过程的波形图,我们可以看出,在读写过程中,link_sda和out_flag总是有一个信号保持高电平,这样的话才能保持sda信号有波形。
signal
为了测试EEPROM_WR,signal模块能够对被测试模块产生的ack信号产生相应,发出模仿MCU的数据、地址信号和读写信号;被测试的模块在接收到信号后会发出读写EEPROM虚拟模块的信号。
本模块为行为模块,不能综合成门级网表。
`timescale 1ns/1ns
`define timeslice 200
module signal(data,
reset,
clk,
rd,
wr,
addr,
ack
);
input ack;
output clk,reset,rd,wr;
output[10:0] addr;
output[7:0] data;
wire[7:0] data;
reg clk,reset,rd,wr;
reg[10:0] addr;
reg W_R;
reg[7:0] data_to_eeprom;
reg[10:0] addr_mem[0:255];
reg[7:0] data_mem[0:255];
reg[7:0] ROM[0:2047];
integer i,j;
integer OUTFILE;
parameter test_number=50;
assign data=W_R ? 8'hzz : data_to_eeprom;
always # (`timeslice/2)
clk=~clk;
initial
begin
reset=1;
i=0;
j=0;
W_R=0;
clk=0;
rd=0;
wr=0;
# 1000
reset=0;
repeat(test_number)
begin
#(5 * `timeslice)
wr=1;
#(`timeslice)
wr=0;
@(posedge ack);
end
#(10 * `timeslice)
W_R=1;
repeat(test_number)
begin
#(5 * `timeslice)
rd=1;
#(`timeslice)
rd=0;
@(posedge ack);
end
end
initial
begin
OUTFILE=$fopen("C:/Users/XQ/Desktop/eeprom_dat.txt");
$readmemh("C:/Users/XQ/Desktop/addr_dat.txt",addr_mem);
$readmemh("C:/Users/XQ/Desktop/data_dat.txt",data_mem);
end
initial
begin
$display("writing-------------------------------writing");
#(2*`timeslice)
for(i=0;i<=test_number;i=i+1)
begin
addr=addr_mem[i];
data_to_eeprom=data_mem[i];
$fdisplay(OUTFILE,"@%0h %0h",addr,data_to_eeprom);
@(posedge ack);
end
end
initial
@(posedge W_R)
begin
addr=addr_mem[0];
$fclose(OUTFILE);
$readmemh("C:/Users/XQ/Desktop/eeprom_dat.txt",ROM);
$display("begin----------------------reading");
for(j=0;j<=test_number;j=j+1)
begin
addr=addr_mem[j];
@(posedge ack)
if(data==ROM[addr])
$display("data %0h == ROM[%0h]",data,addr);
else
$display("data %0h != ROM[%0h]",data,addr);
end
end
EEPROM_ALL_TOP
将各个部分集成在一起
`timescale 1ns/1ns
`define timeslice 200
module EEPROM_ALL_top;
wire[7:0] data;
wire[10:0] addr;
wire reset;
wire clk,rd,wr,ack;
wire sda,scl;
parameter test_numbers=5;
initial
begin
#(`timeslice*180*test_numbers)
$stop;
end
signal #(test_numbers) signal_1(.data(data),
.reset(reset),
.clk(clk),
.rd(rd),
.wr(wr),
.addr(addr),
.ack(ack));
EEPROM EEPROM_1 (.scl(scl),.sda(sda));
EEPROM_WR EEPROM_WR_1 (.sda(sda),
.scl(scl),
.ack(ack),
.reset(reset),
.clk(clk),
.wr(wr),
.rd(rd),
.addr(addr),
.data(data));
endmodule
总结:其实要想彻底搞清楚这个复杂时序逻辑的工作机制,还是需要大家真正上手写一遍代码