Pythonpython学习石头剪刀布

一文总结数据科学家常用的Python库(下)

2019-07-24  本文已影响6人  人工智能遇见磐创

用于建模的Python库

我们已经到达了本文最受期待的部分 - 构建模型!这就是我们大多数人首先进入数据科学领域的原因,不是吗?

让我们通过这三个Python库探索模型构建。

Scikit-learn

就像用于数据操作的Pandas和用于可视化的matplotlib一样,scikit-learn是构建模型的Python库领导者。没有什么比得上它了。

事实上,scikit-learn建立在NumPy,SciPy和matplotlib之上。它是开源的,每个人都可以访问,并且可以在各种环境中重用。

以下是安装scikit-learn的代码:

pip install scikit-learn

Scikit-learn支持在机器学习中执行的不同操作,如分类,回归,聚类,模型选择等。

我还建议您浏览以下链接以了解有关scikit-learn的更多信息:

TensorFlow

TensorFlow由Google开发,是一个流行的深度学习库,可帮助您构建和培训不同的模型。它是一个开源的端到端平台。TensorFlow提供简单的模型构建,强大的机器学习生成,以及强大的实验工具和库。

TensorFlow提供多个抽象级别供您根据需要进行选择。它通过使用高级Keras API用于构建和训练模型,这使得TensorFlow入门和机器学习变得容易。

浏览此链接以查看安装过程:https://www.tensorflow.org/install。使用这些文章开始使用TensorFlow:

PyTorch

什么是PyTorch?嗯,这是一个基于Python的科学计算包,可以用作:

此处查看不同操作系统的安装过程。

PyTorch提供以下功能:

以下是有关PyTorch的两篇非常详细且易于理解的文章:

用于数据可解释性的Python库

你真的了解你的模型是如何工作的吗?你能解释为什么你的模型能够得出结果吗?这些是每个数据科学家应该能够回答的问题。构建黑盒模型在业界是没有用的。

所以,我已经提到了两个Python库,可以帮助您解释模型的性能。

LIME

LIME是一种算法(和库),可以解释任何分类器或回归量的预测。LIME如何做到这一点?通过一个可解释的模型来近似它。灵感来自“为什么我应该相信你?”:解释任何分类器的预测“,这个模型解释器可用于生成任何分类算法的解释器。

安装LIME很简单:

pip install lime

本文将帮助构建LIME背后的直觉和模型解释性:

H2O

我相信很多人都会听说过H2O.ai. 他们是自动化机器学习的市场领导者。但是你知道他们在Python中也有一个模型可解释性库吗?

H2O的无人驾驶AI提供简单的数据可视化技术,用于表示高度特征交互和非线性模型行为。它通过可视化提供机器学习可解释性(MLI),阐明建模结果和模型中特征的影响。

通过以下链接阅读有关H2O的无人驾驶AI执行MLI的更多信息。

用于音频处理的Python库

音频处理或音频分析是指从音频信号中提取信息和含义以进行分析或分类或任何其他任务。它正在成为深度学习中的一种流行功能,所以要留意这一点。

LibROSA

LibROSA是一个用于音乐和音频分析的Python库。它提供了创建音乐信息检索系统所需的构建块。

单击此链接(https://librosa.github.io/librosa/install.html)以查看安装详细信息。

这是一篇关于音频处理及其工作原理的深入文章:

Madmom

这个名字可能听起来很有趣,但Madmom是一个非常漂亮的音频数据分析Python库。它是一个用Python编写的音频信号处理库,主要关注音乐信息检索(MIR)任务。

您需要先安装以下库才能安装Madmom:

您需要以下软件包来测试安装是否成功:

安装Madmom的代码:

pip install madmom

我们甚至有一篇文章要了解Madmom如何用于音乐信息检索:

pyAudioAnalysis

pyAudioAnalysis是一个用于音频特征提取,分类和分段的Python库。它涵盖了广泛的音频分析任务,例如:

您可以使用以下代码安装它:

pip install pyAudioAnalysis

用于图像处理的Python库

如果您正在寻找数据科学行业的角色,您必须学习如何使用图像数据。随着组织能够收集越来越多的数据(主要得益于计算资源的进步),图像处理正变得无处不在。

因此,请确保您对以下三个Python库中的至少一个感到满意。

OpenCV-Python

谈到图像处理,OpenCV是我想到的第一个名字。OpenCV-Python是用于图像处理的Python API,它结合了OpenCV C ++ API和Python语言的最佳特性。

它主要用于解决计算机视觉问题。

OpenCV-Python使用了我们在上面看到的NumPy。所有OpenCV阵列结构都与NumPy数组进行转换。这也使得与使用NumPy的其他库(如SciPy和Matplotlib)集成更容易。

在您的系统中安装OpenCV-Python:

pip3 install opencv-python

以下是两个关于如何在Python中使用OpenCV的流行教程:

Scikit-image

图像处理的另一个python库是Scikit-image。它是用于执行多个和不同图像处理任务的算法集合。

您可以使用它来执行图像分割,几何变换,色彩空间操作,分析,过滤,形态学,特征检测等等。

我们需要在安装scikit-image之前使用以下软件包:

这就是你可以在你的机器上安装scikit-image的方法:

pip install -U scikit-learn

Pillow

Pillow是PIL(Python ImagingLibrary)的新版本。它是从PIL派生出来的,在Ubuntu等一些Linux发行版中已被用作原始PIL的替代品。

Pillow提供了几种执行图像处理的标准程序:

如何安装Pillow?这很简单:

pip install Pillow

查看以下AI漫画,了解Pillow在计算机视觉中的使用:

用于数据库的Python库

学习如何从数据库存储,访问和检索数据是任何数据科学家必备的技能。你根本无法摆脱角色的这个方面。构建模型很棒但是如果不首先检索数据,你会怎么做?

我选择了两个与SQL相关的Python库,你可能会发现它们很有用。

psycopg

Psycopg是最受欢迎的PostgreSQL(一种用于Python编程语言的高级开源关系数据库)适配器。Psycopg的核心是完全实现Python DB API 2.0规范。

目前的psycopg2实现支持:

以下是如何安装psycopg2的方法:

pip install psycopg2

SQLAlchemy

啊,SQL。最流行的数据库语言。SQLAlchemy是一个Python SQL工具包和Object Relational Mapper,它为应用程序开发人员提供了SQL的全部功能和灵活性。

它旨在实现高效,高性能的数据库访问。SQLAlchemy认为数据库是关系代数引擎,而不仅仅是表的集合。

要安装SQLAlchemy,您可以使用以下代码行:

pip install SQLAlchemy

用于部署的Python库

你知道什么型号的部署?如果没有,你应该尽快学习。部署模型意味着将最终模型放入最终应用程序(或技术上称为生产环境)。

Flask

Flask是一个用Python编写的Web框架,通常用于部署数据科学模型。Flask有两个组成部分:

查看下面的示例以打印“Hello world”:

from flask import Flask

app = Flask(__name__)@app.route("/")

def hello():
    return "Hello World!"
    
if __name__ == "__main__":
    app.run()

以下文章是学习Flask的一个很好的起点:

结束笔记

在本文中,我们看到了一大堆python库,它们在进行数据科学项目时常用。那里有更多的库,但这些是每个数据科学家应该知道的核心库。

上一篇 下一篇

猜你喜欢

热点阅读